692 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			692 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* ----------------------------------------------------------------------
 | 
						|
 * Project:      CMSIS DSP Library
 | 
						|
 * Title:        arm_mat_inverse_f32.c
 | 
						|
 * Description:  Floating-point matrix inverse
 | 
						|
 *
 | 
						|
 * $Date:        27. January 2017
 | 
						|
 * $Revision:    V.1.5.1
 | 
						|
 *
 | 
						|
 * Target Processor: Cortex-M cores
 | 
						|
 * -------------------------------------------------------------------- */
 | 
						|
/*
 | 
						|
 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
 | 
						|
 *
 | 
						|
 * SPDX-License-Identifier: Apache-2.0
 | 
						|
 *
 | 
						|
 * Licensed under the Apache License, Version 2.0 (the License); you may
 | 
						|
 * not use this file except in compliance with the License.
 | 
						|
 * You may obtain a copy of the License at
 | 
						|
 *
 | 
						|
 * www.apache.org/licenses/LICENSE-2.0
 | 
						|
 *
 | 
						|
 * Unless required by applicable law or agreed to in writing, software
 | 
						|
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 | 
						|
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
 * See the License for the specific language governing permissions and
 | 
						|
 * limitations under the License.
 | 
						|
 */
 | 
						|
 | 
						|
#include "arm_math.h"
 | 
						|
 | 
						|
/**
 | 
						|
 * @ingroup groupMatrix
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @defgroup MatrixInv Matrix Inverse
 | 
						|
 *
 | 
						|
 * Computes the inverse of a matrix.
 | 
						|
 *
 | 
						|
 * The inverse is defined only if the input matrix is square and non-singular (the determinant
 | 
						|
 * is non-zero). The function checks that the input and output matrices are square and of the
 | 
						|
 * same size.
 | 
						|
 *
 | 
						|
 * Matrix inversion is numerically sensitive and the CMSIS DSP library only supports matrix
 | 
						|
 * inversion of floating-point matrices.
 | 
						|
 *
 | 
						|
 * \par Algorithm
 | 
						|
 * The Gauss-Jordan method is used to find the inverse.
 | 
						|
 * The algorithm performs a sequence of elementary row-operations until it
 | 
						|
 * reduces the input matrix to an identity matrix. Applying the same sequence
 | 
						|
 * of elementary row-operations to an identity matrix yields the inverse matrix.
 | 
						|
 * If the input matrix is singular, then the algorithm terminates and returns error status
 | 
						|
 * <code>ARM_MATH_SINGULAR</code>.
 | 
						|
 * \image html MatrixInverse.gif "Matrix Inverse of a 3 x 3 matrix using Gauss-Jordan Method"
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @addtogroup MatrixInv
 | 
						|
 * @{
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @brief Floating-point matrix inverse.
 | 
						|
 * @param[in]       *pSrc points to input matrix structure
 | 
						|
 * @param[out]      *pDst points to output matrix structure
 | 
						|
 * @return     		The function returns
 | 
						|
 * <code>ARM_MATH_SIZE_MISMATCH</code> if the input matrix is not square or if the size
 | 
						|
 * of the output matrix does not match the size of the input matrix.
 | 
						|
 * If the input matrix is found to be singular (non-invertible), then the function returns
 | 
						|
 * <code>ARM_MATH_SINGULAR</code>.  Otherwise, the function returns <code>ARM_MATH_SUCCESS</code>.
 | 
						|
 */
 | 
						|
 | 
						|
arm_status arm_mat_inverse_f32(
 | 
						|
  const arm_matrix_instance_f32 * pSrc,
 | 
						|
  arm_matrix_instance_f32 * pDst)
 | 
						|
{
 | 
						|
  float32_t *pIn = pSrc->pData;                  /* input data matrix pointer */
 | 
						|
  float32_t *pOut = pDst->pData;                 /* output data matrix pointer */
 | 
						|
  float32_t *pInT1, *pInT2;                      /* Temporary input data matrix pointer */
 | 
						|
  float32_t *pOutT1, *pOutT2;                    /* Temporary output data matrix pointer */
 | 
						|
  float32_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst;  /* Temporary input and output data matrix pointer */
 | 
						|
  uint32_t numRows = pSrc->numRows;              /* Number of rows in the matrix  */
 | 
						|
  uint32_t numCols = pSrc->numCols;              /* Number of Cols in the matrix  */
 | 
						|
 | 
						|
#if defined (ARM_MATH_DSP)
 | 
						|
  float32_t maxC;                                /* maximum value in the column */
 | 
						|
 | 
						|
  /* Run the below code for Cortex-M4 and Cortex-M3 */
 | 
						|
 | 
						|
  float32_t Xchg, in = 0.0f, in1;                /* Temporary input values  */
 | 
						|
  uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l;      /* loop counters */
 | 
						|
  arm_status status;                             /* status of matrix inverse */
 | 
						|
 | 
						|
#ifdef ARM_MATH_MATRIX_CHECK
 | 
						|
 | 
						|
 | 
						|
  /* Check for matrix mismatch condition */
 | 
						|
  if ((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
 | 
						|
     || (pSrc->numRows != pDst->numRows))
 | 
						|
  {
 | 
						|
    /* Set status as ARM_MATH_SIZE_MISMATCH */
 | 
						|
    status = ARM_MATH_SIZE_MISMATCH;
 | 
						|
  }
 | 
						|
  else
 | 
						|
#endif /*    #ifdef ARM_MATH_MATRIX_CHECK    */
 | 
						|
 | 
						|
  {
 | 
						|
 | 
						|
    /*--------------------------------------------------------------------------------------------------------------
 | 
						|
	 * Matrix Inverse can be solved using elementary row operations.
 | 
						|
	 *
 | 
						|
	 *	Gauss-Jordan Method:
 | 
						|
	 *
 | 
						|
	 *	   1. First combine the identity matrix and the input matrix separated by a bar to form an
 | 
						|
	 *        augmented matrix as follows:
 | 
						|
	 *				        _ 	      	       _         _	       _
 | 
						|
	 *					   |  a11  a12 | 1   0  |       |  X11 X12  |
 | 
						|
	 *					   |           |        |   =   |           |
 | 
						|
	 *					   |_ a21  a22 | 0   1 _|       |_ X21 X21 _|
 | 
						|
	 *
 | 
						|
	 *		2. In our implementation, pDst Matrix is used as identity matrix.
 | 
						|
	 *
 | 
						|
	 *		3. Begin with the first row. Let i = 1.
 | 
						|
	 *
 | 
						|
	 *	    4. Check to see if the pivot for column i is the greatest of the column.
 | 
						|
	 *		   The pivot is the element of the main diagonal that is on the current row.
 | 
						|
	 *		   For instance, if working with row i, then the pivot element is aii.
 | 
						|
	 *		   If the pivot is not the most significant of the columns, exchange that row with a row
 | 
						|
	 *		   below it that does contain the most significant value in column i. If the most
 | 
						|
	 *         significant value of the column is zero, then an inverse to that matrix does not exist.
 | 
						|
	 *		   The most significant value of the column is the absolute maximum.
 | 
						|
	 *
 | 
						|
	 *	    5. Divide every element of row i by the pivot.
 | 
						|
	 *
 | 
						|
	 *	    6. For every row below and  row i, replace that row with the sum of that row and
 | 
						|
	 *		   a multiple of row i so that each new element in column i below row i is zero.
 | 
						|
	 *
 | 
						|
	 *	    7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
 | 
						|
	 *		   for every element below and above the main diagonal.
 | 
						|
	 *
 | 
						|
	 *		8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
 | 
						|
	 *		   Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
 | 
						|
	 *----------------------------------------------------------------------------------------------------------------*/
 | 
						|
 | 
						|
    /* Working pointer for destination matrix */
 | 
						|
    pOutT1 = pOut;
 | 
						|
 | 
						|
    /* Loop over the number of rows */
 | 
						|
    rowCnt = numRows;
 | 
						|
 | 
						|
    /* Making the destination matrix as identity matrix */
 | 
						|
    while (rowCnt > 0U)
 | 
						|
    {
 | 
						|
      /* Writing all zeroes in lower triangle of the destination matrix */
 | 
						|
      j = numRows - rowCnt;
 | 
						|
      while (j > 0U)
 | 
						|
      {
 | 
						|
        *pOutT1++ = 0.0f;
 | 
						|
        j--;
 | 
						|
      }
 | 
						|
 | 
						|
      /* Writing all ones in the diagonal of the destination matrix */
 | 
						|
      *pOutT1++ = 1.0f;
 | 
						|
 | 
						|
      /* Writing all zeroes in upper triangle of the destination matrix */
 | 
						|
      j = rowCnt - 1U;
 | 
						|
      while (j > 0U)
 | 
						|
      {
 | 
						|
        *pOutT1++ = 0.0f;
 | 
						|
        j--;
 | 
						|
      }
 | 
						|
 | 
						|
      /* Decrement the loop counter */
 | 
						|
      rowCnt--;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Loop over the number of columns of the input matrix.
 | 
						|
       All the elements in each column are processed by the row operations */
 | 
						|
    loopCnt = numCols;
 | 
						|
 | 
						|
    /* Index modifier to navigate through the columns */
 | 
						|
    l = 0U;
 | 
						|
 | 
						|
    while (loopCnt > 0U)
 | 
						|
    {
 | 
						|
      /* Check if the pivot element is zero..
 | 
						|
       * If it is zero then interchange the row with non zero row below.
 | 
						|
       * If there is no non zero element to replace in the rows below,
 | 
						|
       * then the matrix is Singular. */
 | 
						|
 | 
						|
      /* Working pointer for the input matrix that points
 | 
						|
       * to the pivot element of the particular row  */
 | 
						|
      pInT1 = pIn + (l * numCols);
 | 
						|
 | 
						|
      /* Working pointer for the destination matrix that points
 | 
						|
       * to the pivot element of the particular row  */
 | 
						|
      pOutT1 = pOut + (l * numCols);
 | 
						|
 | 
						|
      /* Temporary variable to hold the pivot value */
 | 
						|
      in = *pInT1;
 | 
						|
 | 
						|
      /* Grab the most significant value from column l */
 | 
						|
      maxC = 0;
 | 
						|
      for (i = l; i < numRows; i++)
 | 
						|
      {
 | 
						|
        maxC = *pInT1 > 0 ? (*pInT1 > maxC ? *pInT1 : maxC) : (-*pInT1 > maxC ? -*pInT1 : maxC);
 | 
						|
        pInT1 += numCols;
 | 
						|
      }
 | 
						|
 | 
						|
      /* Update the status if the matrix is singular */
 | 
						|
      if (maxC == 0.0f)
 | 
						|
      {
 | 
						|
        return ARM_MATH_SINGULAR;
 | 
						|
      }
 | 
						|
 | 
						|
      /* Restore pInT1  */
 | 
						|
      pInT1 = pIn;
 | 
						|
 | 
						|
      /* Destination pointer modifier */
 | 
						|
      k = 1U;
 | 
						|
 | 
						|
      /* Check if the pivot element is the most significant of the column */
 | 
						|
      if ( (in > 0.0f ? in : -in) != maxC)
 | 
						|
      {
 | 
						|
        /* Loop over the number rows present below */
 | 
						|
        i = numRows - (l + 1U);
 | 
						|
 | 
						|
        while (i > 0U)
 | 
						|
        {
 | 
						|
          /* Update the input and destination pointers */
 | 
						|
          pInT2 = pInT1 + (numCols * l);
 | 
						|
          pOutT2 = pOutT1 + (numCols * k);
 | 
						|
 | 
						|
          /* Look for the most significant element to
 | 
						|
           * replace in the rows below */
 | 
						|
          if ((*pInT2 > 0.0f ? *pInT2: -*pInT2) == maxC)
 | 
						|
          {
 | 
						|
            /* Loop over number of columns
 | 
						|
             * to the right of the pilot element */
 | 
						|
            j = numCols - l;
 | 
						|
 | 
						|
            while (j > 0U)
 | 
						|
            {
 | 
						|
              /* Exchange the row elements of the input matrix */
 | 
						|
              Xchg = *pInT2;
 | 
						|
              *pInT2++ = *pInT1;
 | 
						|
              *pInT1++ = Xchg;
 | 
						|
 | 
						|
              /* Decrement the loop counter */
 | 
						|
              j--;
 | 
						|
            }
 | 
						|
 | 
						|
            /* Loop over number of columns of the destination matrix */
 | 
						|
            j = numCols;
 | 
						|
 | 
						|
            while (j > 0U)
 | 
						|
            {
 | 
						|
              /* Exchange the row elements of the destination matrix */
 | 
						|
              Xchg = *pOutT2;
 | 
						|
              *pOutT2++ = *pOutT1;
 | 
						|
              *pOutT1++ = Xchg;
 | 
						|
 | 
						|
              /* Decrement the loop counter */
 | 
						|
              j--;
 | 
						|
            }
 | 
						|
 | 
						|
            /* Flag to indicate whether exchange is done or not */
 | 
						|
            flag = 1U;
 | 
						|
 | 
						|
            /* Break after exchange is done */
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          /* Update the destination pointer modifier */
 | 
						|
          k++;
 | 
						|
 | 
						|
          /* Decrement the loop counter */
 | 
						|
          i--;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      /* Update the status if the matrix is singular */
 | 
						|
      if ((flag != 1U) && (in == 0.0f))
 | 
						|
      {
 | 
						|
        return ARM_MATH_SINGULAR;
 | 
						|
      }
 | 
						|
 | 
						|
      /* Points to the pivot row of input and destination matrices */
 | 
						|
      pPivotRowIn = pIn + (l * numCols);
 | 
						|
      pPivotRowDst = pOut + (l * numCols);
 | 
						|
 | 
						|
      /* Temporary pointers to the pivot row pointers */
 | 
						|
      pInT1 = pPivotRowIn;
 | 
						|
      pInT2 = pPivotRowDst;
 | 
						|
 | 
						|
      /* Pivot element of the row */
 | 
						|
      in = *pPivotRowIn;
 | 
						|
 | 
						|
      /* Loop over number of columns
 | 
						|
       * to the right of the pilot element */
 | 
						|
      j = (numCols - l);
 | 
						|
 | 
						|
      while (j > 0U)
 | 
						|
      {
 | 
						|
        /* Divide each element of the row of the input matrix
 | 
						|
         * by the pivot element */
 | 
						|
        in1 = *pInT1;
 | 
						|
        *pInT1++ = in1 / in;
 | 
						|
 | 
						|
        /* Decrement the loop counter */
 | 
						|
        j--;
 | 
						|
      }
 | 
						|
 | 
						|
      /* Loop over number of columns of the destination matrix */
 | 
						|
      j = numCols;
 | 
						|
 | 
						|
      while (j > 0U)
 | 
						|
      {
 | 
						|
        /* Divide each element of the row of the destination matrix
 | 
						|
         * by the pivot element */
 | 
						|
        in1 = *pInT2;
 | 
						|
        *pInT2++ = in1 / in;
 | 
						|
 | 
						|
        /* Decrement the loop counter */
 | 
						|
        j--;
 | 
						|
      }
 | 
						|
 | 
						|
      /* Replace the rows with the sum of that row and a multiple of row i
 | 
						|
       * so that each new element in column i above row i is zero.*/
 | 
						|
 | 
						|
      /* Temporary pointers for input and destination matrices */
 | 
						|
      pInT1 = pIn;
 | 
						|
      pInT2 = pOut;
 | 
						|
 | 
						|
      /* index used to check for pivot element */
 | 
						|
      i = 0U;
 | 
						|
 | 
						|
      /* Loop over number of rows */
 | 
						|
      /*  to be replaced by the sum of that row and a multiple of row i */
 | 
						|
      k = numRows;
 | 
						|
 | 
						|
      while (k > 0U)
 | 
						|
      {
 | 
						|
        /* Check for the pivot element */
 | 
						|
        if (i == l)
 | 
						|
        {
 | 
						|
          /* If the processing element is the pivot element,
 | 
						|
             only the columns to the right are to be processed */
 | 
						|
          pInT1 += numCols - l;
 | 
						|
 | 
						|
          pInT2 += numCols;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          /* Element of the reference row */
 | 
						|
          in = *pInT1;
 | 
						|
 | 
						|
          /* Working pointers for input and destination pivot rows */
 | 
						|
          pPRT_in = pPivotRowIn;
 | 
						|
          pPRT_pDst = pPivotRowDst;
 | 
						|
 | 
						|
          /* Loop over the number of columns to the right of the pivot element,
 | 
						|
             to replace the elements in the input matrix */
 | 
						|
          j = (numCols - l);
 | 
						|
 | 
						|
          while (j > 0U)
 | 
						|
          {
 | 
						|
            /* Replace the element by the sum of that row
 | 
						|
               and a multiple of the reference row  */
 | 
						|
            in1 = *pInT1;
 | 
						|
            *pInT1++ = in1 - (in * *pPRT_in++);
 | 
						|
 | 
						|
            /* Decrement the loop counter */
 | 
						|
            j--;
 | 
						|
          }
 | 
						|
 | 
						|
          /* Loop over the number of columns to
 | 
						|
             replace the elements in the destination matrix */
 | 
						|
          j = numCols;
 | 
						|
 | 
						|
          while (j > 0U)
 | 
						|
          {
 | 
						|
            /* Replace the element by the sum of that row
 | 
						|
               and a multiple of the reference row  */
 | 
						|
            in1 = *pInT2;
 | 
						|
            *pInT2++ = in1 - (in * *pPRT_pDst++);
 | 
						|
 | 
						|
            /* Decrement the loop counter */
 | 
						|
            j--;
 | 
						|
          }
 | 
						|
 | 
						|
        }
 | 
						|
 | 
						|
        /* Increment the temporary input pointer */
 | 
						|
        pInT1 = pInT1 + l;
 | 
						|
 | 
						|
        /* Decrement the loop counter */
 | 
						|
        k--;
 | 
						|
 | 
						|
        /* Increment the pivot index */
 | 
						|
        i++;
 | 
						|
      }
 | 
						|
 | 
						|
      /* Increment the input pointer */
 | 
						|
      pIn++;
 | 
						|
 | 
						|
      /* Decrement the loop counter */
 | 
						|
      loopCnt--;
 | 
						|
 | 
						|
      /* Increment the index modifier */
 | 
						|
      l++;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
  /* Run the below code for Cortex-M0 */
 | 
						|
 | 
						|
  float32_t Xchg, in = 0.0f;                     /* Temporary input values  */
 | 
						|
  uint32_t i, rowCnt, flag = 0U, j, loopCnt, k, l;      /* loop counters */
 | 
						|
  arm_status status;                             /* status of matrix inverse */
 | 
						|
 | 
						|
#ifdef ARM_MATH_MATRIX_CHECK
 | 
						|
 | 
						|
  /* Check for matrix mismatch condition */
 | 
						|
  if ((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
 | 
						|
     || (pSrc->numRows != pDst->numRows))
 | 
						|
  {
 | 
						|
    /* Set status as ARM_MATH_SIZE_MISMATCH */
 | 
						|
    status = ARM_MATH_SIZE_MISMATCH;
 | 
						|
  }
 | 
						|
  else
 | 
						|
#endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */
 | 
						|
  {
 | 
						|
 | 
						|
    /*--------------------------------------------------------------------------------------------------------------
 | 
						|
	 * Matrix Inverse can be solved using elementary row operations.
 | 
						|
	 *
 | 
						|
	 *	Gauss-Jordan Method:
 | 
						|
	 *
 | 
						|
	 *	   1. First combine the identity matrix and the input matrix separated by a bar to form an
 | 
						|
	 *        augmented matrix as follows:
 | 
						|
	 *				        _  _	      _	    _	   _   _         _	       _
 | 
						|
	 *					   |  |  a11  a12  | | | 1   0  |   |       |  X11 X12  |
 | 
						|
	 *					   |  |            | | |        |   |   =   |           |
 | 
						|
	 *					   |_ |_ a21  a22 _| | |_0   1 _|  _|       |_ X21 X21 _|
 | 
						|
	 *
 | 
						|
	 *		2. In our implementation, pDst Matrix is used as identity matrix.
 | 
						|
	 *
 | 
						|
	 *		3. Begin with the first row. Let i = 1.
 | 
						|
	 *
 | 
						|
	 *	    4. Check to see if the pivot for row i is zero.
 | 
						|
	 *		   The pivot is the element of the main diagonal that is on the current row.
 | 
						|
	 *		   For instance, if working with row i, then the pivot element is aii.
 | 
						|
	 *		   If the pivot is zero, exchange that row with a row below it that does not
 | 
						|
	 *		   contain a zero in column i. If this is not possible, then an inverse
 | 
						|
	 *		   to that matrix does not exist.
 | 
						|
	 *
 | 
						|
	 *	    5. Divide every element of row i by the pivot.
 | 
						|
	 *
 | 
						|
	 *	    6. For every row below and  row i, replace that row with the sum of that row and
 | 
						|
	 *		   a multiple of row i so that each new element in column i below row i is zero.
 | 
						|
	 *
 | 
						|
	 *	    7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
 | 
						|
	 *		   for every element below and above the main diagonal.
 | 
						|
	 *
 | 
						|
	 *		8. Now an identical matrix is formed to the left of the bar(input matrix, src).
 | 
						|
	 *		   Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).
 | 
						|
	 *----------------------------------------------------------------------------------------------------------------*/
 | 
						|
 | 
						|
    /* Working pointer for destination matrix */
 | 
						|
    pOutT1 = pOut;
 | 
						|
 | 
						|
    /* Loop over the number of rows */
 | 
						|
    rowCnt = numRows;
 | 
						|
 | 
						|
    /* Making the destination matrix as identity matrix */
 | 
						|
    while (rowCnt > 0U)
 | 
						|
    {
 | 
						|
      /* Writing all zeroes in lower triangle of the destination matrix */
 | 
						|
      j = numRows - rowCnt;
 | 
						|
      while (j > 0U)
 | 
						|
      {
 | 
						|
        *pOutT1++ = 0.0f;
 | 
						|
        j--;
 | 
						|
      }
 | 
						|
 | 
						|
      /* Writing all ones in the diagonal of the destination matrix */
 | 
						|
      *pOutT1++ = 1.0f;
 | 
						|
 | 
						|
      /* Writing all zeroes in upper triangle of the destination matrix */
 | 
						|
      j = rowCnt - 1U;
 | 
						|
      while (j > 0U)
 | 
						|
      {
 | 
						|
        *pOutT1++ = 0.0f;
 | 
						|
        j--;
 | 
						|
      }
 | 
						|
 | 
						|
      /* Decrement the loop counter */
 | 
						|
      rowCnt--;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Loop over the number of columns of the input matrix.
 | 
						|
       All the elements in each column are processed by the row operations */
 | 
						|
    loopCnt = numCols;
 | 
						|
 | 
						|
    /* Index modifier to navigate through the columns */
 | 
						|
    l = 0U;
 | 
						|
    //for(loopCnt = 0U; loopCnt < numCols; loopCnt++)
 | 
						|
    while (loopCnt > 0U)
 | 
						|
    {
 | 
						|
      /* Check if the pivot element is zero..
 | 
						|
       * If it is zero then interchange the row with non zero row below.
 | 
						|
       * If there is no non zero element to replace in the rows below,
 | 
						|
       * then the matrix is Singular. */
 | 
						|
 | 
						|
      /* Working pointer for the input matrix that points
 | 
						|
       * to the pivot element of the particular row  */
 | 
						|
      pInT1 = pIn + (l * numCols);
 | 
						|
 | 
						|
      /* Working pointer for the destination matrix that points
 | 
						|
       * to the pivot element of the particular row  */
 | 
						|
      pOutT1 = pOut + (l * numCols);
 | 
						|
 | 
						|
      /* Temporary variable to hold the pivot value */
 | 
						|
      in = *pInT1;
 | 
						|
 | 
						|
      /* Destination pointer modifier */
 | 
						|
      k = 1U;
 | 
						|
 | 
						|
      /* Check if the pivot element is zero */
 | 
						|
      if (*pInT1 == 0.0f)
 | 
						|
      {
 | 
						|
        /* Loop over the number rows present below */
 | 
						|
        for (i = (l + 1U); i < numRows; i++)
 | 
						|
        {
 | 
						|
          /* Update the input and destination pointers */
 | 
						|
          pInT2 = pInT1 + (numCols * l);
 | 
						|
          pOutT2 = pOutT1 + (numCols * k);
 | 
						|
 | 
						|
          /* Check if there is a non zero pivot element to
 | 
						|
           * replace in the rows below */
 | 
						|
          if (*pInT2 != 0.0f)
 | 
						|
          {
 | 
						|
            /* Loop over number of columns
 | 
						|
             * to the right of the pilot element */
 | 
						|
            for (j = 0U; j < (numCols - l); j++)
 | 
						|
            {
 | 
						|
              /* Exchange the row elements of the input matrix */
 | 
						|
              Xchg = *pInT2;
 | 
						|
              *pInT2++ = *pInT1;
 | 
						|
              *pInT1++ = Xchg;
 | 
						|
            }
 | 
						|
 | 
						|
            for (j = 0U; j < numCols; j++)
 | 
						|
            {
 | 
						|
              Xchg = *pOutT2;
 | 
						|
              *pOutT2++ = *pOutT1;
 | 
						|
              *pOutT1++ = Xchg;
 | 
						|
            }
 | 
						|
 | 
						|
            /* Flag to indicate whether exchange is done or not */
 | 
						|
            flag = 1U;
 | 
						|
 | 
						|
            /* Break after exchange is done */
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          /* Update the destination pointer modifier */
 | 
						|
          k++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      /* Update the status if the matrix is singular */
 | 
						|
      if ((flag != 1U) && (in == 0.0f))
 | 
						|
      {
 | 
						|
        return ARM_MATH_SINGULAR;
 | 
						|
      }
 | 
						|
 | 
						|
      /* Points to the pivot row of input and destination matrices */
 | 
						|
      pPivotRowIn = pIn + (l * numCols);
 | 
						|
      pPivotRowDst = pOut + (l * numCols);
 | 
						|
 | 
						|
      /* Temporary pointers to the pivot row pointers */
 | 
						|
      pInT1 = pPivotRowIn;
 | 
						|
      pOutT1 = pPivotRowDst;
 | 
						|
 | 
						|
      /* Pivot element of the row */
 | 
						|
      in = *(pIn + (l * numCols));
 | 
						|
 | 
						|
      /* Loop over number of columns
 | 
						|
       * to the right of the pilot element */
 | 
						|
      for (j = 0U; j < (numCols - l); j++)
 | 
						|
      {
 | 
						|
        /* Divide each element of the row of the input matrix
 | 
						|
         * by the pivot element */
 | 
						|
        *pInT1 = *pInT1 / in;
 | 
						|
        pInT1++;
 | 
						|
      }
 | 
						|
      for (j = 0U; j < numCols; j++)
 | 
						|
      {
 | 
						|
        /* Divide each element of the row of the destination matrix
 | 
						|
         * by the pivot element */
 | 
						|
        *pOutT1 = *pOutT1 / in;
 | 
						|
        pOutT1++;
 | 
						|
      }
 | 
						|
 | 
						|
      /* Replace the rows with the sum of that row and a multiple of row i
 | 
						|
       * so that each new element in column i above row i is zero.*/
 | 
						|
 | 
						|
      /* Temporary pointers for input and destination matrices */
 | 
						|
      pInT1 = pIn;
 | 
						|
      pOutT1 = pOut;
 | 
						|
 | 
						|
      for (i = 0U; i < numRows; i++)
 | 
						|
      {
 | 
						|
        /* Check for the pivot element */
 | 
						|
        if (i == l)
 | 
						|
        {
 | 
						|
          /* If the processing element is the pivot element,
 | 
						|
             only the columns to the right are to be processed */
 | 
						|
          pInT1 += numCols - l;
 | 
						|
          pOutT1 += numCols;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
          /* Element of the reference row */
 | 
						|
          in = *pInT1;
 | 
						|
 | 
						|
          /* Working pointers for input and destination pivot rows */
 | 
						|
          pPRT_in = pPivotRowIn;
 | 
						|
          pPRT_pDst = pPivotRowDst;
 | 
						|
 | 
						|
          /* Loop over the number of columns to the right of the pivot element,
 | 
						|
             to replace the elements in the input matrix */
 | 
						|
          for (j = 0U; j < (numCols - l); j++)
 | 
						|
          {
 | 
						|
            /* Replace the element by the sum of that row
 | 
						|
               and a multiple of the reference row  */
 | 
						|
            *pInT1 = *pInT1 - (in * *pPRT_in++);
 | 
						|
            pInT1++;
 | 
						|
          }
 | 
						|
          /* Loop over the number of columns to
 | 
						|
             replace the elements in the destination matrix */
 | 
						|
          for (j = 0U; j < numCols; j++)
 | 
						|
          {
 | 
						|
            /* Replace the element by the sum of that row
 | 
						|
               and a multiple of the reference row  */
 | 
						|
            *pOutT1 = *pOutT1 - (in * *pPRT_pDst++);
 | 
						|
            pOutT1++;
 | 
						|
          }
 | 
						|
 | 
						|
        }
 | 
						|
        /* Increment the temporary input pointer */
 | 
						|
        pInT1 = pInT1 + l;
 | 
						|
      }
 | 
						|
      /* Increment the input pointer */
 | 
						|
      pIn++;
 | 
						|
 | 
						|
      /* Decrement the loop counter */
 | 
						|
      loopCnt--;
 | 
						|
      /* Increment the index modifier */
 | 
						|
      l++;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
#endif /* #if defined (ARM_MATH_DSP) */
 | 
						|
 | 
						|
    /* Set status as ARM_MATH_SUCCESS */
 | 
						|
    status = ARM_MATH_SUCCESS;
 | 
						|
 | 
						|
    if ((flag != 1U) && (in == 0.0f))
 | 
						|
    {
 | 
						|
      pIn = pSrc->pData;
 | 
						|
      for (i = 0; i < numRows * numCols; i++)
 | 
						|
      {
 | 
						|
        if (pIn[i] != 0.0f)
 | 
						|
            break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (i == numRows * numCols)
 | 
						|
        status = ARM_MATH_SINGULAR;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  /* Return to application */
 | 
						|
  return (status);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * @} end of MatrixInv group
 | 
						|
 */
 |