Initial commit
This commit is contained in:
		
							
								
								
									
										120
									
								
								Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q15.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										120
									
								
								Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q15.c
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,120 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_softmax_q15.c | ||||
|  * Description:  Q15 softmax function | ||||
|  * | ||||
|  * $Date:        20. February 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup Softmax | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Q15 softmax function | ||||
|    * @param[in]       vec_in      pointer to input vector | ||||
|    * @param[in]       dim_vec     input vector dimention | ||||
|    * @param[out]      p_out       pointer to output vector | ||||
|    * @return none. | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    *  Here, instead of typical e based softmax, we use | ||||
|    *  2-based softmax, i.e.,: | ||||
|    * | ||||
|    *  y_i = 2^(x_i) / sum(2^x_j) | ||||
|    * | ||||
|    *  The relative output will be different here. | ||||
|    *  But mathematically, the gradient will be the same | ||||
|    *  with a log(2) scaling factor. | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| void arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out) | ||||
| { | ||||
|     q31_t     sum; | ||||
|     int16_t   i; | ||||
|     uint8_t   shift; | ||||
|     q31_t     base; | ||||
|     base = -1 * 0x100000; | ||||
|     for (i = 0; i < dim_vec; i++) | ||||
|     { | ||||
|         if (vec_in[i] > base) | ||||
|         { | ||||
|             base = vec_in[i]; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* we ignore really small values   | ||||
|      * anyway, they will be 0 after shrinking | ||||
|      * to q15_t | ||||
|      */ | ||||
|     base = base - 16; | ||||
|  | ||||
|     sum = 0; | ||||
|  | ||||
|     for (i = 0; i < dim_vec; i++) | ||||
|     { | ||||
|         if (vec_in[i] > base) | ||||
|         { | ||||
|             shift = (uint8_t)__USAT(vec_in[i] - base, 5); | ||||
|             sum += 0x1 << shift; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* This is effectively (0x1 << 32) / sum */ | ||||
|     int64_t div_base = 0x100000000LL; | ||||
|     int output_base = (int32_t)(div_base / sum); | ||||
|  | ||||
|     /* Final confidence will be output_base >> ( 17 - (vec_in[i] - base) ) | ||||
|      * so 32768 (0x1<<15) -> 100% confidence when sum = 0x1 << 16, output_base = 0x1 << 16 | ||||
|      * and vec_in[i]-base = 16 | ||||
|      */ | ||||
|     for (i = 0; i < dim_vec; i++) | ||||
|     { | ||||
|         if (vec_in[i] > base)  | ||||
|         { | ||||
|             /* Here minimum value of 17+base-vec[i] will be 1 */ | ||||
|             shift = (uint8_t)__USAT(17+base-vec_in[i], 5); | ||||
|             p_out[i] = (q15_t) __SSAT((output_base >> shift), 16); | ||||
|         } else | ||||
|         { | ||||
|             p_out[i] = 0; | ||||
|         } | ||||
|     } | ||||
|  | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of Softmax group | ||||
|  */ | ||||
							
								
								
									
										121
									
								
								Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										121
									
								
								Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,121 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_softmax_q7.c | ||||
|  * Description:  Q7 softmax function | ||||
|  * | ||||
|  * $Date:        20. February 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup Softmax | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Q7 softmax function | ||||
|    * @param[in]       vec_in      pointer to input vector | ||||
|    * @param[in]       dim_vec     input vector dimention | ||||
|    * @param[out]      p_out       pointer to output vector | ||||
|    * @return none. | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    *  Here, instead of typical natural logarithm e based softmax, we use | ||||
|    *  2-based softmax here, i.e.,: | ||||
|    *  | ||||
|    *  y_i = 2^(x_i) / sum(2^x_j) | ||||
|    * | ||||
|    *  The relative output will be different here. | ||||
|    *  But mathematically, the gradient will be the same | ||||
|    *  with a log(2) scaling factor. | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| void arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out) | ||||
| { | ||||
|     q31_t     sum; | ||||
|     int16_t   i; | ||||
|     uint8_t   shift; | ||||
|     q15_t     base; | ||||
|     base = -257; | ||||
|  | ||||
|     /* We first search for the maximum */ | ||||
|     for (i = 0; i < dim_vec; i++) | ||||
|     { | ||||
|         if (vec_in[i] > base) | ||||
|         { | ||||
|             base = vec_in[i]; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /*  | ||||
|      * So the base is set to max-8, meaning  | ||||
|      * that we ignore really small values.  | ||||
|      * anyway, they will be 0 after shrinking to q7_t. | ||||
|      */ | ||||
|     base = base - 8; | ||||
|  | ||||
|     sum = 0; | ||||
|  | ||||
|     for (i = 0; i < dim_vec; i++) | ||||
|     { | ||||
|         if (vec_in[i] > base)  | ||||
|         { | ||||
|             shift = (uint8_t)__USAT(vec_in[i] - base, 5); | ||||
|             sum += 0x1 << shift; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* This is effectively (0x1 << 20) / sum */ | ||||
|     int output_base = 0x100000 / sum; | ||||
|  | ||||
|     /*  | ||||
|      * Final confidence will be output_base >> ( 13 - (vec_in[i] - base) ) | ||||
|      * so 128 (0x1<<7) -> 100% confidence when sum = 0x1 << 8, output_base = 0x1 << 12  | ||||
|      * and vec_in[i]-base = 8 | ||||
|      */ | ||||
|     for (i = 0; i < dim_vec; i++)  | ||||
|     { | ||||
|         if (vec_in[i] > base)  | ||||
|         { | ||||
|             /* Here minimum value of 13+base-vec_in[i] will be 5 */ | ||||
|             shift = (uint8_t)__USAT(13+base-vec_in[i], 5); | ||||
|             p_out[i] = (q7_t) __SSAT((output_base >> shift), 8); | ||||
|         } else { | ||||
|             p_out[i] = 0; | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of Softmax group | ||||
|  */ | ||||
		Reference in New Issue
	
	Block a user