Initial commit
This commit is contained in:
		| @@ -0,0 +1,101 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_nn_activations_q15.c | ||||
|  * Description:  Q15 neural network activation function using direct table look-up | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_common_tables.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup Acti | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Q15 neural network activation function using direct table look-up | ||||
|    * @param[in,out]   data        pointer to input | ||||
|    * @param[in]       size        number of elements | ||||
|    * @param[in]       int_width   bit-width of the integer part, assume to be smaller than 3 | ||||
|    * @param[in]       type        type of activation functions | ||||
|    * @return none. | ||||
|    * | ||||
|    * @details | ||||
|    *  | ||||
|    * This is the direct table look-up approach. | ||||
|    * | ||||
|    * Assume here the integer part of the fixed-point is <= 3. | ||||
|    * More than 3 just not making much sense, makes no difference with | ||||
|    * saturation followed by any of these activation functions.  | ||||
|    */ | ||||
|  | ||||
| void arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width, arm_nn_activation_type type) | ||||
| { | ||||
|     uint16_t  i = size; | ||||
|     q15_t    *pIn = data; | ||||
|     q15_t    *pOut = data; | ||||
|     uint16_t  shift_size = 8 + 3 - int_width; | ||||
|     uint32_t  bit_mask = 0x7FF >> int_width; | ||||
|     uint32_t  full_frac = bit_mask + 1; | ||||
|     const q15_t *lookup_table; | ||||
|  | ||||
|     switch (type) | ||||
|     { | ||||
|     case ARM_SIGMOID: | ||||
|         lookup_table = sigmoidTable_q15; | ||||
|         break; | ||||
|     case ARM_TANH: | ||||
|     default: | ||||
|         lookup_table = tanhTable_q15; | ||||
|         break; | ||||
|     } | ||||
|  | ||||
|     while (i) | ||||
|     { | ||||
|         q15_t     out; | ||||
|         q15_t     in = *pIn++; | ||||
|         q15_t     frac = (uint32_t) in & bit_mask; | ||||
|         q15_t     value = lookup_table[__USAT(in >> shift_size, 8)]; | ||||
|         q15_t     value2 = lookup_table[__USAT(1 + (in >> shift_size), 8)]; | ||||
|  | ||||
|         /* doing the interpolation here for better accuracy */ | ||||
|         out = ((q31_t) (full_frac - frac) * value + (q31_t) value2 * frac) >> shift_size; | ||||
|  | ||||
|         *pOut++ = out; | ||||
|         i--; | ||||
|     } | ||||
|  | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of Acti group | ||||
|  */ | ||||
| @@ -0,0 +1,91 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_nn_activations_q7.c | ||||
|  * Description:  Q7 neural network activation function using direct table look-up | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_common_tables.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup Acti | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Q7 neural network activation function using direct table look-up | ||||
|    * @param[in,out]   data        pointer to input | ||||
|    * @param[in]       size        number of elements | ||||
|    * @param[in]       int_width   bit-width of the integer part, assume to be smaller than 3 | ||||
|    * @param[in]       type        type of activation functions | ||||
|    * @return none. | ||||
|    * | ||||
|    * @details | ||||
|    *  | ||||
|    * This is the direct table look-up approach. | ||||
|    * | ||||
|    * Assume here the integer part of the fixed-point is <= 3. | ||||
|    * More than 3 just not making much sense, makes no difference with | ||||
|    * saturation followed by any of these activation functions.  | ||||
|    */ | ||||
|  | ||||
| void arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width, arm_nn_activation_type type) | ||||
| { | ||||
|     uint16_t  i = size; | ||||
|     q7_t     *pIn = data; | ||||
|     q7_t     *pOut = data; | ||||
|     q7_t      in; | ||||
|     q7_t      out; | ||||
|     uint16_t  shift_size = 3 - int_width; | ||||
|     const q7_t *lookup_table; | ||||
|     switch (type) | ||||
|     { | ||||
|     case ARM_SIGMOID: | ||||
|         lookup_table = sigmoidTable_q7; | ||||
|         break; | ||||
|     case ARM_TANH: | ||||
|     default: | ||||
|         lookup_table = tanhTable_q7; | ||||
|         break; | ||||
|     } | ||||
|     while (i) | ||||
|     { | ||||
|         in = *pIn++; | ||||
|         out = lookup_table[(uint8_t) (in >> shift_size)]; | ||||
|         *pOut++ = out; | ||||
|         i--; | ||||
|     } | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of Acti group | ||||
|  */ | ||||
							
								
								
									
										106
									
								
								Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q15.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										106
									
								
								Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q15.c
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,106 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_relu_q15.c | ||||
|  * Description:  Q15 version of ReLU | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup Acti | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Q15 RELU function | ||||
|    * @param[in,out]   data        pointer to input | ||||
|    * @param[in]       size        number of elements | ||||
|    * @return none. | ||||
|    *  | ||||
|    * @details | ||||
|    * | ||||
|    * Optimized relu with QSUB instructions. | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| void arm_relu_q15(q15_t * data, uint16_t size) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     uint16_t  i = size >> 1; | ||||
|     q15_t    *pIn = data; | ||||
|     q15_t    *pOut = data; | ||||
|     q31_t     in; | ||||
|     q31_t     buf; | ||||
|     q31_t     mask; | ||||
|  | ||||
|     while (i) | ||||
|     { | ||||
|         in = *__SIMD32(pIn)++; | ||||
|  | ||||
|         /* extract the first bit */ | ||||
|         buf = __ROR(in & 0x80008000, 15); | ||||
|  | ||||
|         /* if MSB=1, mask will be 0xFF, 0x0 otherwise */ | ||||
|         mask = __QSUB16(0x00000000, buf); | ||||
|  | ||||
|         *__SIMD32(pOut)++ = in & (~mask); | ||||
|         i--; | ||||
|     } | ||||
|  | ||||
|     if (size & 0x1) | ||||
|     { | ||||
|         if (*pIn < 0) | ||||
|         { | ||||
|             *pIn = 0; | ||||
|         } | ||||
|         pIn++; | ||||
|     } | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     uint16_t  i; | ||||
|  | ||||
|     for (i = 0; i < size; i++) | ||||
|     { | ||||
|         if (data[i] < 0) | ||||
|             data[i] = 0; | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of Acti group | ||||
|  */ | ||||
							
								
								
									
										110
									
								
								Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q7.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										110
									
								
								Drivers/CMSIS/NN/Source/ActivationFunctions/arm_relu_q7.c
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,110 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_relu_q7.c | ||||
|  * Description:  Q7 version of ReLU | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup Acti | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Q7 RELU function | ||||
|    * @param[in,out]   data        pointer to input | ||||
|    * @param[in]       size        number of elements | ||||
|    * @return none. | ||||
|    *  | ||||
|    * @details | ||||
|    * | ||||
|    * Optimized relu with QSUB instructions. | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| void arm_relu_q7(q7_t * data, uint16_t size) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     uint16_t  i = size >> 2; | ||||
|     q7_t     *pIn = data; | ||||
|     q7_t     *pOut = data; | ||||
|     q31_t     in; | ||||
|     q31_t     buf; | ||||
|     q31_t     mask; | ||||
|  | ||||
|     while (i) | ||||
|     { | ||||
|         in = *__SIMD32(pIn)++; | ||||
|  | ||||
|         /* extract the first bit */ | ||||
|         buf = __ROR(in & 0x80808080, 7); | ||||
|  | ||||
|         /* if MSB=1, mask will be 0xFF, 0x0 otherwise */ | ||||
|         mask = __QSUB8(0x00000000, buf); | ||||
|  | ||||
|         *__SIMD32(pOut)++ = in & (~mask); | ||||
|         i--; | ||||
|     } | ||||
|  | ||||
|     i = size & 0x3; | ||||
|     while (i) | ||||
|     { | ||||
|         if (*pIn < 0) | ||||
|         { | ||||
|             *pIn = 0; | ||||
|         } | ||||
|         pIn++; | ||||
|         i--; | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|  | ||||
|     uint16_t  i; | ||||
|  | ||||
|     for (i = 0; i < size; i++) | ||||
|     { | ||||
|         if (data[i] < 0) | ||||
|             data[i] = 0; | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of Acti group | ||||
|  */ | ||||
| @@ -0,0 +1,235 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_1x1_HWC_q7_fast_nonsquare.c | ||||
|  * Description:  Fast Q7 version of 1x1 convolution (non-square shape) | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape) | ||||
|  * @param[in]       Im_in        pointer to input tensor | ||||
|  * @param[in]       dim_im_in_x  input tensor dimention x | ||||
|  * @param[in]       dim_im_in_y  input tensor dimention y | ||||
|  * @param[in]       ch_im_in     number of input tensor channels | ||||
|  * @param[in]       wt           pointer to kernel weights | ||||
|  * @param[in]       ch_im_out    number of filters, i.e., output tensor channels | ||||
|  * @param[in]       dim_kernel_x filter kernel size x | ||||
|  * @param[in]       dim_kernel_y filter kernel size y | ||||
|  * @param[in]       padding_x    padding size x | ||||
|  * @param[in]       padding_y    padding size y | ||||
|  * @param[in]       stride_x     convolution stride x | ||||
|  * @param[in]       stride_y     convolution stride y | ||||
|  * @param[in]       bias         pointer to bias | ||||
|  * @param[in]       bias_shift   amount of left-shift for bias | ||||
|  * @param[in]       out_shift    amount of right-shift for output | ||||
|  * @param[in,out]   Im_out       pointer to output tensor | ||||
|  * @param[in]       dim_im_out_x output tensor dimension x | ||||
|  * @param[in]       dim_im_out_y output tensor dimension y | ||||
|  * @param[in,out]   bufferA      pointer to buffer space for input  | ||||
|  * @param[in,out]   bufferB      pointer to buffer space for output | ||||
|  * @return     The function returns either | ||||
|  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
|  * | ||||
|  * This function is optimized for convolution with 1x1 kernel size (i.e., dim_kernel_x=1 | ||||
|  * and dim_kernel_y=1). It can be used for the second half of MobileNets [1] after depthwise  | ||||
|  * separable convolution. | ||||
|  * | ||||
|  * This function is the version with full list of optimization tricks, but with | ||||
|  * some contraints: | ||||
|  *   ch_im_in is multiple of 4 | ||||
|  *   ch_im_out is multiple of 2 | ||||
|  * | ||||
|  * [1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications | ||||
|  * https://arxiv.org/abs/1704.04861 | ||||
|  */ | ||||
|  | ||||
| arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in, | ||||
|                                                   const uint16_t dim_im_in_x, | ||||
|                                                   const uint16_t dim_im_in_y, | ||||
|                                                   const uint16_t ch_im_in, | ||||
|                                                   const q7_t * wt, | ||||
|                                                   const uint16_t ch_im_out, | ||||
|                                                   const uint16_t dim_kernel_x, | ||||
|                                                   const uint16_t dim_kernel_y, | ||||
|                                                   const uint16_t padding_x, | ||||
|                                                   const uint16_t padding_y, | ||||
|                                                   const uint16_t stride_x, | ||||
|                                                   const uint16_t stride_y, | ||||
|                                                   const q7_t * bias, | ||||
|                                                   const uint16_t bias_shift, | ||||
|                                                   const uint16_t out_shift, | ||||
|                                                   q7_t * Im_out, | ||||
|                                                   const uint16_t dim_im_out_x, | ||||
|                                                   const uint16_t dim_im_out_y,  | ||||
|                                                   q15_t * bufferA,  | ||||
|                                                   q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     int16_t   i_out_y, i_out_x; | ||||
|     int16_t   i_ch_out; | ||||
|  | ||||
|     /* ----------------------- | ||||
|      *  Here we use bufferA as q15_t internally as computation are done with q15_t level | ||||
|      *  im2col are done to output in q15_t format from q7_t input | ||||
|      */ | ||||
|  | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q7_t     *pOut = Im_out; | ||||
|  | ||||
|     if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1 | ||||
|         || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_out_y * dim_im_in_x + i_out_x) * ch_im_in, pBuffer, | ||||
|                                              ch_im_in); | ||||
|             pBuffer += ch_im_in; | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in, bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* check if there is left-over for compute */ | ||||
|     if (pBuffer != bufferA) | ||||
|     { | ||||
|         const q7_t *pA = wt; | ||||
|         for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++) | ||||
|         { | ||||
|             q31_t     sum = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift); | ||||
|             q15_t    *pB = bufferA; | ||||
|             /* basically each time it process 4 entries */ | ||||
|             uint16_t  colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2; | ||||
|  | ||||
|             while (colCnt) | ||||
|             { | ||||
|  | ||||
|                 q31_t     inA1, inA2; | ||||
|                 q31_t     inB1, inB2; | ||||
|  | ||||
|                 pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2); | ||||
|  | ||||
|                 inB1 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA1, inB1, sum); | ||||
|                 inB2 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA2, inB2, sum); | ||||
|  | ||||
|                 colCnt--; | ||||
|             } | ||||
|             colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3; | ||||
|             while (colCnt) | ||||
|             { | ||||
|                 q7_t      inA1 = *pA++; | ||||
|                 q15_t     inB1 = *pB++; | ||||
|                 sum += inA1 * inB1; | ||||
|                 colCnt--; | ||||
|             } | ||||
|             *pOut = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|             pOut++; | ||||
|  | ||||
|         } | ||||
|  | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
| 		 | ||||
|     int       i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     int       in_row, in_col; | ||||
|  | ||||
|     if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1 | ||||
|         || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out_y; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out_x; k++) | ||||
|             { | ||||
|                 conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel_y; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel_x; n++) | ||||
|                     { | ||||
|                         // if-for implementation | ||||
|                         in_row = stride_y * j + m - padding_y; | ||||
|                         in_col = stride_x * k + n - padding_x; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] * | ||||
|                                     wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_y + n) * ch_im_in + l]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,207 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_HWC_q15_basic.c | ||||
|  * Description:  Q15 version of convolution | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Basic Q15 convolution function | ||||
|    * @param[in]       Im_in       pointer to input tensor | ||||
|    * @param[in]       dim_im_in   input tensor dimention | ||||
|    * @param[in]       ch_im_in    number of input tensor channels | ||||
|    * @param[in]       wt          pointer to kernel weights | ||||
|    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels | ||||
|    * @param[in]       dim_kernel  filter kernel size | ||||
|    * @param[in]       padding     padding sizes | ||||
|    * @param[in]       stride      convolution stride | ||||
|    * @param[in]       bias        pointer to bias | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in,out]   Im_out      pointer to output tensor | ||||
|    * @param[in]       dim_im_out  output tensor dimension | ||||
|    * @param[in,out]   bufferA     pointer to buffer space for input | ||||
|    * @param[in,out]   bufferB     pointer to buffer space for output | ||||
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code>  | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * bufferA size: ch_im_in*dim_kernel*dim_kernel | ||||
|    * | ||||
|    * bufferB size: 0 | ||||
|    * | ||||
|    * This basic version is designed to work for any input tensor and weight | ||||
|    * dimension.  | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_convolve_HWC_q15_basic(const q15_t * Im_in, | ||||
|                            const uint16_t dim_im_in, | ||||
|                            const uint16_t ch_im_in, | ||||
|                            const q15_t * wt, | ||||
|                            const uint16_t ch_im_out, | ||||
|                            const uint16_t dim_kernel, | ||||
|                            const uint16_t padding, | ||||
|                            const uint16_t stride, | ||||
|                            const q15_t * bias, | ||||
|                            const uint16_t bias_shift, | ||||
|                            const uint16_t out_shift, | ||||
|                            q15_t * Im_out,  | ||||
|                            const uint16_t dim_im_out,  | ||||
|                            q15_t * bufferA,  | ||||
|                            q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x; | ||||
|  | ||||
|     uint16_t  im2col_out_pixel_index = 0; | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q15_t    *pOut = Im_out; | ||||
|     q15_t    *im_buffer = bufferA; | ||||
|     const q15_t *pA; | ||||
|     int       i; | ||||
|  | ||||
|     /* This part implements the im2col function */ | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* Filling 0 for out-of-bound paddings */ | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ | ||||
|                         memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             pA = wt; | ||||
|             for (i = 0; i < ch_im_out; i++) | ||||
|             { | ||||
|                 q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                 q15_t    *pB = im_buffer; | ||||
|                 uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 2; | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     q31_t     inA1 = *__SIMD32(pA)++; | ||||
|                     q31_t     inB1 = *__SIMD32(pB)++; | ||||
|                     q31_t     inA2 = *__SIMD32(pA)++; | ||||
|                     q31_t     inB2 = *__SIMD32(pB)++; | ||||
|  | ||||
|                     sum = __SMLAD(inA1, inB1, sum); | ||||
|                     sum = __SMLAD(inA2, inB2, sum); | ||||
|  | ||||
|                     colCnt--; | ||||
|                 } | ||||
|                 colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3; | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     q15_t     inA1 = *pA++; | ||||
|                     q15_t     inB1 = *pB++; | ||||
|                     sum += inA1 * inB1; | ||||
|                     colCnt--; | ||||
|                 } | ||||
|                 *pOut = (q15_t) __SSAT((sum >> out_shift), 16); | ||||
|                 pOut++; | ||||
|             } | ||||
|  | ||||
|             /* counter reset */ | ||||
|             pBuffer = im_buffer; | ||||
|             im2col_out_pixel_index++; | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     uint16_t  i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     signed char in_row, in_col; | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out; k++) | ||||
|             { | ||||
|                 conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel; n++) | ||||
|                     { | ||||
|                         in_row = stride * j + m - padding; | ||||
|                         in_col = stride * k + n - padding; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += | ||||
|                                     Im_in[(in_row * dim_im_in + in_col) * ch_im_in + | ||||
|                                           l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + | ||||
|                                                                                             n) * ch_im_in + l]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,255 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_HWC_q15_fast.c | ||||
|  * Description:  Fast Q15 version of convolution | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Fast Q15 convolution function | ||||
|    * @param[in]       Im_in       pointer to input tensor | ||||
|    * @param[in]       dim_im_in   input tensor dimention | ||||
|    * @param[in]       ch_im_in    number of input tensor channels | ||||
|    * @param[in]       wt          pointer to kernel weights | ||||
|    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels | ||||
|    * @param[in]       dim_kernel  filter kernel size | ||||
|    * @param[in]       padding     padding sizes | ||||
|    * @param[in]       stride      convolution stride | ||||
|    * @param[in]       bias        pointer to bias | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in,out]   Im_out      pointer to output tensor | ||||
|    * @param[in]       dim_im_out  output tensor dimension | ||||
|    * @param[in,out]   bufferA     pointer to buffer space for input  | ||||
|    * @param[in,out]   bufferB     pointer to buffer space for output | ||||
|    * @return     The function returns either | ||||
|    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel | ||||
|    * | ||||
|    * bufferB size: 0 | ||||
|    * | ||||
|    * <b>Input dimension constraints:</b> | ||||
|    * | ||||
|    * ch_im_in is multiple of 2  | ||||
|    * | ||||
|    * ch_im_out is multipe of 2 | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_convolve_HWC_q15_fast(const q15_t * Im_in, | ||||
|                           const uint16_t dim_im_in, | ||||
|                           const uint16_t ch_im_in, | ||||
|                           const q15_t * wt, | ||||
|                           const uint16_t ch_im_out, | ||||
|                           const uint16_t dim_kernel, | ||||
|                           const uint16_t padding, | ||||
|                           const uint16_t stride, | ||||
|                           const q15_t * bias, | ||||
|                           const uint16_t bias_shift, | ||||
|                           const uint16_t out_shift, | ||||
|                           q15_t * Im_out,  | ||||
|                           const uint16_t dim_im_out,  | ||||
|                           q15_t * bufferA,  | ||||
|                           q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x; | ||||
|  | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q15_t    *im_buffer = bufferA; | ||||
|     q15_t    *pOut = Im_out; | ||||
|  | ||||
|     if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     /* This part implements the im2col function */ | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ | ||||
|                         memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (i_out_x & 0x1) | ||||
|             { | ||||
|                 int       i; | ||||
|                 /* initialize the matrix pointers for A */ | ||||
|                 const q15_t *pA = wt; | ||||
|  | ||||
|                 /* set up the second output pointers */ | ||||
|                 q15_t    *pOut2 = pOut + ch_im_out; | ||||
|  | ||||
|                 /* this loop over rows in A */ | ||||
|                 for (i = 0; i < ch_im_out; i += 2) | ||||
|                 { | ||||
|                     /* setup pointers for B */ | ||||
|                     q15_t    *pB = im_buffer; | ||||
|                     const q15_t *pB2 = pB + ch_im_in * dim_kernel * dim_kernel; | ||||
|  | ||||
|                     /* aling the second pointer for A */ | ||||
|                     const q15_t *pA2 = pA + ch_im_in * dim_kernel * dim_kernel; | ||||
|  | ||||
|                     /* init the sum with bias */ | ||||
|                     q31_t     sum =  ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                     q31_t     sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                     q31_t     sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); | ||||
|                     q31_t     sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|                     uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 1; | ||||
|                     /* accumulate over the vector */ | ||||
|                     while (colCnt) | ||||
|                     { | ||||
|                         q31_t     inA1 = *__SIMD32(pA)++; | ||||
|                         q31_t     inB1 = *__SIMD32(pB)++; | ||||
|                         q31_t     inA2 = *__SIMD32(pA2)++; | ||||
|                         q31_t     inB2 = *__SIMD32(pB2)++; | ||||
|  | ||||
|                         sum = __SMLAD(inA1, inB1, sum); | ||||
|                         sum2 = __SMLAD(inA1, inB2, sum2); | ||||
|                         sum3 = __SMLAD(inA2, inB1, sum3); | ||||
|                         sum4 = __SMLAD(inA2, inB2, sum4); | ||||
|  | ||||
|                         colCnt--; | ||||
|                     }           /* while over colCnt */ | ||||
|                     colCnt = ch_im_in * dim_kernel * dim_kernel & 0x1; | ||||
|                     while (colCnt) | ||||
|                     { | ||||
|                         q15_t     inA1 = *pA++; | ||||
|                         q15_t     inB1 = *pB++; | ||||
|                         q15_t     inA2 = *pA2++; | ||||
|                         q15_t     inB2 = *pB2++; | ||||
|  | ||||
|                         sum += inA1 * inB1; | ||||
|                         sum2 += inA1 * inB2; | ||||
|                         sum3 += inA2 * inB1; | ||||
|                         sum4 += inA2 * inB2; | ||||
|                         colCnt--; | ||||
|                     }           /* while over colCnt */ | ||||
|                     *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16); | ||||
|                     *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16); | ||||
|                     *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16); | ||||
|                     *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16); | ||||
|  | ||||
|                     /* skip the row computed with A2 */ | ||||
|                     pA += ch_im_in * dim_kernel * dim_kernel; | ||||
|                 }               /* for over ch_im_out */ | ||||
|  | ||||
|                 pOut += ch_im_out; | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = im_buffer; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     uint16_t  i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     signed char in_row, in_col; | ||||
|  | ||||
|     if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out; k++) | ||||
|             { | ||||
|                 conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel; n++) | ||||
|                     { | ||||
|                         in_row = stride * j + m - padding; | ||||
|                         in_col = stride * k + n - padding; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += | ||||
|                                     Im_in[(in_row * dim_im_in + in_col) * ch_im_in + | ||||
|                                           l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + | ||||
|                                                                                             n) * ch_im_in + l]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,265 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_HWC_q15_fast.c | ||||
|  * Description:  Fast Q15 version of convolution | ||||
|  * | ||||
|  * $Date:        24. May 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Fast Q15 convolution function (non-sqaure shape) | ||||
|    * @param[in]       Im_in        pointer to input tensor | ||||
|    * @param[in]       dim_im_in_x  input tensor dimention x | ||||
|    * @param[in]       dim_im_in_y  input tensor dimention y | ||||
|    * @param[in]       ch_im_in     number of input tensor channels | ||||
|    * @param[in]       wt           pointer to kernel weights | ||||
|    * @param[in]       ch_im_out    number of filters, i.e., output tensor channels | ||||
|    * @param[in]       dim_kernel_x filter kernel size x | ||||
|    * @param[in]       dim_kernel_y filter kernel size y | ||||
|    * @param[in]       padding_x    padding size x | ||||
|    * @param[in]       padding_y    padding size y | ||||
|    * @param[in]       stride_x     convolution stride x | ||||
|    * @param[in]       stride_y     convolution stride y | ||||
|    * @param[in]       bias         pointer to bias | ||||
|    * @param[in]       bias_shift   amount of left-shift for bias | ||||
|    * @param[in]       out_shift    amount of right-shift for output | ||||
|    * @param[in,out]   Im_out       pointer to output tensor | ||||
|    * @param[in]       dim_im_out_x output tensor dimension x | ||||
|    * @param[in]       dim_im_out_y output tensor dimension y | ||||
|    * @param[in,out]   bufferA      pointer to buffer space for input  | ||||
|    * @param[in,out]   bufferB      pointer to buffer space for output | ||||
|    * @return     The function returns either | ||||
|    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel | ||||
|    * | ||||
|    * bufferB size: 0 | ||||
|    * | ||||
|    * <b>Input dimension constraints:</b> | ||||
|    * | ||||
|    * ch_im_in is multiple of 2  | ||||
|    * | ||||
|    * ch_im_out is multipe of 2 | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in, | ||||
|                                     const uint16_t dim_im_in_x, | ||||
|                                     const uint16_t dim_im_in_y, | ||||
|                                     const uint16_t ch_im_in, | ||||
|                                     const q15_t * wt, | ||||
|                                     const uint16_t ch_im_out, | ||||
|                                     const uint16_t dim_kernel_x, | ||||
|                                     const uint16_t dim_kernel_y, | ||||
|                                     const uint16_t padding_x, | ||||
|                                     const uint16_t padding_y, | ||||
|                                     const uint16_t stride_x, | ||||
|                                     const uint16_t stride_y, | ||||
|                                     const q15_t * bias, | ||||
|                                     const uint16_t bias_shift, | ||||
|                                     const uint16_t out_shift, | ||||
|                                     q15_t * Im_out, | ||||
|                                     const uint16_t dim_im_out_x, | ||||
|                                     const uint16_t dim_im_out_y,  | ||||
|                                     q15_t * bufferA,  | ||||
|                                     q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x; | ||||
|  | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q15_t    *im_buffer = bufferA; | ||||
|     q15_t    *pOut = Im_out; | ||||
|  | ||||
|     if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     /* This part implements the im2col function */ | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) | ||||
|         { | ||||
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ | ||||
|                         memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (i_out_x & 0x1) | ||||
|             { | ||||
|                 int       i; | ||||
|                 /* initialize the matrix pointers for A */ | ||||
|                 const q15_t *pA = wt; | ||||
|  | ||||
|                 /* set up the second output pointers */ | ||||
|                 q15_t    *pOut2 = pOut + ch_im_out; | ||||
|  | ||||
|                 /* this loop over rows in A */ | ||||
|                 for (i = 0; i < ch_im_out; i += 2) | ||||
|                 { | ||||
|                     /* setup pointers for B */ | ||||
|                     q15_t    *pB = im_buffer; | ||||
|                     const q15_t *pB2 = pB + ch_im_in * dim_kernel_y * dim_kernel_x; | ||||
|  | ||||
|                     /* aling the second pointer for A */ | ||||
|                     const q15_t *pA2 = pA + ch_im_in * dim_kernel_y * dim_kernel_x; | ||||
|  | ||||
|                     /* init the sum with bias */ | ||||
|                     q31_t     sum =  ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                     q31_t     sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                     q31_t     sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); | ||||
|                     q31_t     sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|                     uint16_t  colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 1; | ||||
|                     /* accumulate over the vector */ | ||||
|                     while (colCnt) | ||||
|                     { | ||||
|                         q31_t     inA1 = *__SIMD32(pA)++; | ||||
|                         q31_t     inB1 = *__SIMD32(pB)++; | ||||
|                         q31_t     inA2 = *__SIMD32(pA2)++; | ||||
|                         q31_t     inB2 = *__SIMD32(pB2)++; | ||||
|  | ||||
|                         sum = __SMLAD(inA1, inB1, sum); | ||||
|                         sum2 = __SMLAD(inA1, inB2, sum2); | ||||
|                         sum3 = __SMLAD(inA2, inB1, sum3); | ||||
|                         sum4 = __SMLAD(inA2, inB2, sum4); | ||||
|  | ||||
|                         colCnt--; | ||||
|                     }           /* while over colCnt */ | ||||
|                     colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x1; | ||||
|                     while (colCnt) | ||||
|                     { | ||||
|                         q15_t     inA1 = *pA++; | ||||
|                         q15_t     inB1 = *pB++; | ||||
|                         q15_t     inA2 = *pA2++; | ||||
|                         q15_t     inB2 = *pB2++; | ||||
|  | ||||
|                         sum += inA1 * inB1; | ||||
|                         sum2 += inA1 * inB2; | ||||
|                         sum3 += inA2 * inB1; | ||||
|                         sum4 += inA2 * inB2; | ||||
|                         colCnt--; | ||||
|                     }           /* while over colCnt */ | ||||
|                     *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16); | ||||
|                     *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16); | ||||
|                     *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16); | ||||
|                     *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16); | ||||
|  | ||||
|                     /* skip the row computed with A2 */ | ||||
|                     pA += ch_im_in * dim_kernel_y * dim_kernel_x; | ||||
|                 }               /* for over ch_im_out */ | ||||
|  | ||||
|                 pOut += ch_im_out; | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = im_buffer; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     uint16_t  i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     signed char in_row, in_col; | ||||
|  | ||||
|     if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out_y; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out_x; k++) | ||||
|             { | ||||
|                 conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel_y; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel_x; n++) | ||||
|                     { | ||||
|                         in_row = stride_y * j + m - padding_y; | ||||
|                         in_col = stride_x * k + n - padding_x; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += | ||||
|                                     Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + | ||||
|                                           l] * wt[i * ch_im_in * dim_kernel_x * dim_kernel_y + (m * dim_kernel_x + | ||||
|                                                                                             n) * ch_im_in + l]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,279 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_HWC_q7_RGB.c | ||||
|  * Description:  Q7 version of convolution for RGB image | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Q7 convolution function for RGB image | ||||
|    * @param[in]       Im_in       pointer to input tensor | ||||
|    * @param[in]       dim_im_in   input tensor dimention | ||||
|    * @param[in]       ch_im_in    number of input tensor channels | ||||
|    * @param[in]       wt          pointer to kernel weights | ||||
|    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels | ||||
|    * @param[in]       dim_kernel  filter kernel size | ||||
|    * @param[in]       padding     padding sizes | ||||
|    * @param[in]       stride      convolution stride | ||||
|    * @param[in]       bias        pointer to bias | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in,out]   Im_out      pointer to output tensor | ||||
|    * @param[in]       dim_im_out  output tensor dimension | ||||
|    * @param[in,out]   bufferA     pointer to buffer space for input | ||||
|    * @param[in,out]   bufferB     pointer to buffer space for output | ||||
|    * @return     The function returns either | ||||
|    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel | ||||
|    * | ||||
|    * bufferB size: 0 | ||||
|    * | ||||
|    * <b>Input dimension constraints:</b> | ||||
|    * | ||||
|    * ch_im_in equals 3 | ||||
|    * | ||||
|    * This kernel is written exclusively for convolution with ch_im_in | ||||
|    * equals 3. This applies on the first layer of CNNs which has input | ||||
|    * image with RGB format. | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_convolve_HWC_q7_RGB(const q7_t * Im_in, | ||||
|                         const uint16_t dim_im_in, | ||||
|                         const uint16_t ch_im_in, | ||||
|                         const q7_t * wt, | ||||
|                         const uint16_t ch_im_out, | ||||
|                         const uint16_t dim_kernel, | ||||
|                         const uint16_t padding, | ||||
|                         const uint16_t stride, | ||||
|                         const q7_t * bias, | ||||
|                         const uint16_t bias_shift, | ||||
|                         const uint16_t out_shift, | ||||
|                         q7_t * Im_out, const uint16_t dim_im_out, q15_t * bufferA, q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x; | ||||
|  | ||||
|     /* | ||||
|      *  Here we use bufferA as q15_t internally as computation are done with q15_t level | ||||
|      *  im2col are done to output in q15_t format from q7_t input | ||||
|      */ | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q7_t     *pOut = Im_out; | ||||
|  | ||||
|     // check if number of input channels is 3 | ||||
|     if (ch_im_in != 3) | ||||
|     { | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|     // This part implements the im2col function | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* Equivalent to arm_fill_q15(0, pBuffer, ch_im_in) with assumption: ch_im_in = 3 */ | ||||
|                         *__SIMD32(pBuffer) = 0x0; | ||||
|                         *(pBuffer + 2) = 0; | ||||
|                         pBuffer += 3; | ||||
|                     } else | ||||
|                     { | ||||
|                         /*  | ||||
|                          * Equivalent to: | ||||
|                          *  arm_q7_to_q15_no_shift( (q7_t*)Im_in+(i_ker_y*dim_im_in+i_ker_x)*3, pBuffer, 3); | ||||
|                          */ | ||||
|  | ||||
|                         const q7_t *pPixel = Im_in + (i_ker_y * dim_im_in + i_ker_x) * 3; | ||||
|                         q31_t     buf = *__SIMD32(pPixel); | ||||
|  | ||||
|                         union arm_nnword top; | ||||
|                         union arm_nnword bottom; | ||||
|  | ||||
|                         top.word = __SXTB16(buf); | ||||
|                         bottom.word = __SXTB16(__ROR(buf, 8)); | ||||
|  | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|                         /* | ||||
|                          *  little-endian, | omit | 3rd  | 2nd  | 1st  | | ||||
|                          *                MSB                         LSB | ||||
|                          *   top | 3rd | 1st |; bottom | omit | 2nd | | ||||
|                          * | ||||
|                          *  version 1, need to swap 2nd and 3rd weight | ||||
|                          * *__SIMD32(pBuffer) = top.word; | ||||
|                          * *(pBuffer+2) = bottom.half_words[0]; | ||||
|                          * | ||||
|                          *  version 2, no weight shuffling required | ||||
|                          */ | ||||
|                         *pBuffer++ = top.half_words[0]; | ||||
|                         *__SIMD32(pBuffer) = __PKHBT(bottom.word, top.word, 0); | ||||
| #else | ||||
|                         /* | ||||
|                          *  big-endian,    | 1st  | 2nd  | 3rd  | omit |  | ||||
|                          *                MSB                         LSB | ||||
|                          *  top | 2nd | omit |; bottom | 1st | 3rd | | ||||
|                          *  | ||||
|                          *  version 1, need to swap 2nd and 3rd weight | ||||
|                          * *__SIMD32(pBuffer) = bottom.word; | ||||
|                          * *(pBuffer+2) = top.half_words[1]; | ||||
|                          *  | ||||
|                          *  version 2, no weight shuffling required | ||||
|                          */ | ||||
|                         *pBuffer++ = bottom.half_words[0]; | ||||
|                         *__SIMD32(pBuffer) = __PKHTB(top.word, bottom.word, 0); | ||||
| #endif | ||||
|                         pBuffer += 2; | ||||
|                     } | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * 3 * dim_kernel * dim_kernel) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15(wt, bufferA, | ||||
|                                                   ch_im_out, | ||||
|                                                   3 * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); | ||||
|  | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* left-over because odd number of output pixels */ | ||||
|     if (pBuffer != bufferA) | ||||
|     { | ||||
|         const q7_t *pA = wt; | ||||
|         int       i; | ||||
|  | ||||
|         for (i = 0; i < ch_im_out; i++) | ||||
|         { | ||||
|             q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|             q15_t    *pB = bufferA; | ||||
|             /* basically each time it process 4 entries */ | ||||
|             uint16_t  colCnt = 3 * dim_kernel * dim_kernel >> 2; | ||||
|  | ||||
|             while (colCnt) | ||||
|             { | ||||
|  | ||||
|                 q31_t     inA1, inA2; | ||||
|                 q31_t     inB1, inB2; | ||||
|  | ||||
|                 pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2); | ||||
|  | ||||
|                 inB1 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA1, inB1, sum); | ||||
|                 inB2 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA2, inB2, sum); | ||||
|  | ||||
|                 colCnt--; | ||||
|             } | ||||
|             colCnt = 3 * dim_kernel * dim_kernel & 0x3; | ||||
|             while (colCnt) | ||||
|             { | ||||
|                 q7_t      inA1 = *pA++; | ||||
|                 q15_t     inB1 = *pB++; | ||||
|                 sum += inA1 * inB1; | ||||
|                 colCnt--; | ||||
|             } | ||||
|             *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|         } | ||||
|     } | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|  | ||||
|     uint16_t  i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     signed char in_row, in_col; | ||||
|  | ||||
|     // check if number of input channels is 3 | ||||
|     if (ch_im_in != 3) | ||||
|     { | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out; k++) | ||||
|             { | ||||
|                 conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel; n++) | ||||
|                     { | ||||
|                         /* if-for implementation */ | ||||
|                         in_row = stride * j + m - padding; | ||||
|                         in_col = stride * k + n - padding; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += | ||||
|                                     Im_in[(in_row * dim_im_in + in_col) * ch_im_in + | ||||
|                                           l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + | ||||
|                                                                                             n) * ch_im_in + l]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return (ARM_MATH_SUCCESS); | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,230 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_HWC_q7_basic.c | ||||
|  * Description:	 Q7 version of convolution | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Basic Q7 convolution function | ||||
|    * @param[in]       Im_in       pointer to input tensor | ||||
|    * @param[in]       dim_im_in   input tensor dimention | ||||
|    * @param[in]       ch_im_in    number of input tensor channels | ||||
|    * @param[in]       wt          pointer to kernel weights | ||||
|    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels | ||||
|    * @param[in]       dim_kernel  filter kernel size | ||||
|    * @param[in]       padding     padding sizes | ||||
|    * @param[in]       stride      convolution stride | ||||
|    * @param[in]       bias        pointer to bias | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in,out]   Im_out      pointer to output tensor | ||||
|    * @param[in]       dim_im_out  output tensor dimension | ||||
|    * @param[in,out]   bufferA     pointer to buffer space for input  | ||||
|    * @param[in,out]   bufferB     pointer to buffer space for output | ||||
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code>  | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel | ||||
|    * | ||||
|    * bufferB size: 0 | ||||
|    * | ||||
|    * This basic version is designed to work for any input tensor and weight | ||||
|    * dimension.  | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_convolve_HWC_q7_basic(const q7_t * Im_in, | ||||
|                           const uint16_t dim_im_in, | ||||
|                           const uint16_t ch_im_in, | ||||
|                           const q7_t * wt, | ||||
|                           const uint16_t ch_im_out, | ||||
|                           const uint16_t dim_kernel, | ||||
|                           const uint16_t padding, | ||||
|                           const uint16_t stride, | ||||
|                           const q7_t * bias, | ||||
|                           const uint16_t bias_shift, | ||||
|                           const uint16_t out_shift, | ||||
|                           q7_t * Im_out,  | ||||
|                           const uint16_t dim_im_out,  | ||||
|                           q15_t * bufferA,  | ||||
|                           q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x; | ||||
|  | ||||
|     /*  | ||||
|      *  Here we use bufferA as q15_t internally as computation are done with q15_t level | ||||
|      *  im2col are done to output in q15_t format from q7_t input | ||||
|      */ | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q7_t     *pOut = Im_out; | ||||
|  | ||||
|     /* This part implements the im2col function */ | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* Filling 0 for out-of-bound paddings */ | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         /* Copying the pixel data to column */ | ||||
|                         arm_q7_to_q15_no_shift((q7_t *) | ||||
|                                                Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             /* Computation is filed for every 2 columns */ | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15(wt, bufferA, | ||||
|                                                   ch_im_out, | ||||
|                                                   ch_im_in * | ||||
|                                                   dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); | ||||
|  | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* left-over because odd number of output pixels */ | ||||
|     if (pBuffer != bufferA) | ||||
|     { | ||||
|         const q7_t *pA = wt; | ||||
|         int       i; | ||||
|  | ||||
|         for (i = 0; i < ch_im_out; i++) | ||||
|         { | ||||
|             /* Load the accumulator with bias first */ | ||||
|             q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|             /* Point to the beging of the im2col buffer */ | ||||
|             q15_t    *pB = bufferA; | ||||
|  | ||||
|             /* Each time it process 4 entries */ | ||||
|             uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 2; | ||||
|  | ||||
|             while (colCnt) | ||||
|             { | ||||
|                 q31_t     inA1, inA2; | ||||
|                 q31_t     inB1, inB2; | ||||
|  | ||||
|                 pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2); | ||||
|  | ||||
|                 inB1 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA1, inB1, sum); | ||||
|                 inB2 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA2, inB2, sum); | ||||
|  | ||||
|                 colCnt--; | ||||
|             } | ||||
|             colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3; | ||||
|             while (colCnt) | ||||
|             { | ||||
|                 q7_t      inA1 = *pA++; | ||||
|                 q15_t     inB1 = *pB++; | ||||
|                 sum += inA1 * inB1; | ||||
|                 colCnt--; | ||||
|             } | ||||
|             *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|         } | ||||
|     } | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|  | ||||
|     uint16_t  i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     signed char in_row, in_col; | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out; k++) | ||||
|             { | ||||
|                 conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel; n++) | ||||
|                     { | ||||
|                         // if-for implementation | ||||
|                         in_row = stride * j + m - padding; | ||||
|                         in_col = stride * k + n - padding; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += | ||||
|                                     Im_in[(in_row * dim_im_in + in_col) * ch_im_in + | ||||
|                                           l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + | ||||
|                                                                                             n) * ch_im_in + l]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,228 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_HWC_q7_basic.c | ||||
|  * Description:	 Q7 version of convolution | ||||
|  * | ||||
|  * $Date:        13. July 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Basic Q7 convolution function (non-sqaure shape) | ||||
|    * @param[in]       Im_in        pointer to input tensor | ||||
|    * @param[in]       dim_im_in_x  input tensor dimention x | ||||
|    * @param[in]       dim_im_in_y  input tensor dimention y | ||||
|    * @param[in]       ch_im_in     number of input tensor channels | ||||
|    * @param[in]       wt           pointer to kernel weights | ||||
|    * @param[in]       ch_im_out    number of filters, i.e., output tensor channels | ||||
|    * @param[in]       dim_kernel_x filter kernel size x | ||||
|    * @param[in]       dim_kernel_y filter kernel size y | ||||
|    * @param[in]       padding_x    padding size x | ||||
|    * @param[in]       padding_y    padding size y | ||||
|    * @param[in]       stride_x     convolution stride x | ||||
|    * @param[in]       stride_y     convolution stride y | ||||
|    * @param[in]       bias         pointer to bias | ||||
|    * @param[in]       bias_shift   amount of left-shift for bias | ||||
|    * @param[in]       out_shift    amount of right-shift for output | ||||
|    * @param[in,out]   Im_out       pointer to output tensor | ||||
|    * @param[in]       dim_im_out_x output tensor dimension x | ||||
|    * @param[in]       dim_im_out_y output tensor dimension y | ||||
|    * @param[in,out]   bufferA      pointer to buffer space for input | ||||
|    * @param[in,out]   bufferB      pointer to buffer space for output | ||||
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code> | ||||
|    */ | ||||
|  | ||||
| arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in, | ||||
|                                                const uint16_t dim_im_in_x, | ||||
|                                                const uint16_t dim_im_in_y, | ||||
|                                                const uint16_t ch_im_in, | ||||
|                                                const q7_t * wt, | ||||
|                                                const uint16_t ch_im_out, | ||||
|                                                const uint16_t dim_kernel_x, | ||||
|                                                const uint16_t dim_kernel_y, | ||||
|                                                const uint16_t padding_x, | ||||
|                                                const uint16_t padding_y, | ||||
|                                                const uint16_t stride_x, | ||||
|                                                const uint16_t stride_y, | ||||
|                                                const q7_t * bias, | ||||
|                                                const uint16_t bias_shift, | ||||
|                                                const uint16_t out_shift, | ||||
|                                                q7_t * Im_out, | ||||
|                                                const uint16_t dim_im_out_x, | ||||
|                                                const uint16_t dim_im_out_y, | ||||
|                                                q15_t * bufferA, | ||||
|                                                q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x; | ||||
|  | ||||
|     /*  | ||||
|      *  Here we use bufferA as q15_t internally as computation are done with q15_t level | ||||
|      *  im2col are done to output in q15_t format from q7_t input | ||||
|      */ | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q7_t     *pOut = Im_out; | ||||
|  | ||||
|     /* This part implements the im2col function */ | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) | ||||
|         { | ||||
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) | ||||
|                     { | ||||
|                         /* Filling 0 for out-of-bound paddings */ | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         /* Copying the pixel data to column */ | ||||
|                         arm_q7_to_q15_no_shift((q7_t *) | ||||
|                                                Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             /* Computation is filed for every 2 columns */ | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_y * dim_kernel_x) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15(wt, bufferA, | ||||
|                                                   ch_im_out, | ||||
|                                                   ch_im_in * | ||||
|                                                   dim_kernel_y * dim_kernel_x, bias_shift, out_shift, bias, pOut); | ||||
|  | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* left-over because odd number of output pixels */ | ||||
|     if (pBuffer != bufferA) | ||||
|     { | ||||
|         const q7_t *pA = wt; | ||||
|         int       i; | ||||
|  | ||||
|         for (i = 0; i < ch_im_out; i++) | ||||
|         { | ||||
|             /* Load the accumulator with bias first */ | ||||
|             q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|             /* Point to the beging of the im2col buffer */ | ||||
|             q15_t    *pB = bufferA; | ||||
|  | ||||
|             /* Each time it process 4 entries */ | ||||
|             uint16_t  colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 2; | ||||
|  | ||||
|             while (colCnt) | ||||
|             { | ||||
|                 q31_t     inA1, inA2; | ||||
|                 q31_t     inB1, inB2; | ||||
|  | ||||
|                 pA = (q7_t *) read_and_pad((void *)pA, &inA1, &inA2); | ||||
|  | ||||
|                 inB1 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA1, inB1, sum); | ||||
|                 inB2 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA2, inB2, sum); | ||||
|  | ||||
|                 colCnt--; | ||||
|             } | ||||
|             colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3; | ||||
|             while (colCnt) | ||||
|             { | ||||
|                 q7_t      inA1 = *pA++; | ||||
|                 q15_t     inB1 = *pB++; | ||||
|                 sum += inA1 * inB1; | ||||
|                 colCnt--; | ||||
|             } | ||||
|             *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|         } | ||||
|     } | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|  | ||||
|     uint16_t  i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     signed char in_row, in_col; | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out_y; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out_x; k++) | ||||
|             { | ||||
|                 conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel_y; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel_x; n++) | ||||
|                     { | ||||
|                         // if-for implementation | ||||
|                         in_row = stride_y * j + m - padding_y; | ||||
|                         in_col = stride_x * k + n - padding_x; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += | ||||
|                                     Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *  | ||||
|                                          wt[i * ch_im_in * dim_kernel_y * dim_kernel_x +  | ||||
|                                          (m * dim_kernel_x + n) * ch_im_in + l]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,408 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_HWC_q7_fast.c | ||||
|  * Description:  Fast Q7 version of convolution | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Fast Q7 convolution function | ||||
|    * @param[in]       Im_in       pointer to input tensor | ||||
|    * @param[in]       dim_im_in   input tensor dimention | ||||
|    * @param[in]       ch_im_in    number of input tensor channels | ||||
|    * @param[in]       wt          pointer to kernel weights | ||||
|    * @param[in]       ch_im_out   number of filters, i.e., output tensor channels | ||||
|    * @param[in]       dim_kernel  filter kernel size | ||||
|    * @param[in]       padding     padding sizes | ||||
|    * @param[in]       stride      convolution stride | ||||
|    * @param[in]       bias        pointer to bias | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in,out]   Im_out      pointer to output tensor | ||||
|    * @param[in]       dim_im_out  output tensor dimension | ||||
|    * @param[in,out]   bufferA     pointer to buffer space for input  | ||||
|    * @param[in,out]   bufferB     pointer to buffer space for output | ||||
|    * @return     The function returns either | ||||
|    * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel | ||||
|    * | ||||
|    * bufferB size: 0 | ||||
|    * | ||||
|    * <b>Input dimension constraints:</b> | ||||
|    * | ||||
|    * ch_im_in is multiple of 4    ( because of the SIMD32 read and swap ) | ||||
|    * | ||||
|    * ch_im_out is multipe of 2    ( bacause 2x2 mat_mult kernel ) | ||||
|    * | ||||
|    * The im2col converts the Q7 tensor input into Q15 column, which is stored in | ||||
|    * bufferA. There is reordering happenning during this im2col process with | ||||
|    * arm_q7_to_q15_reordered_no_shift. For every four elements, the second and | ||||
|    * third elements are swapped.  | ||||
|    * | ||||
|    * The computation kernel arm_nn_mat_mult_kernel_q7_q15_reordered does the | ||||
|    * GEMM computation with the reordered columns. | ||||
|    * | ||||
|    * To speed-up the determination of the padding condition, we split the | ||||
|    * computation into 3x3 parts, i.e., {top, mid, bottom} X {left, mid, right}. | ||||
|    * This reduces the total number of boundary condition checks and improves | ||||
|    * the data copying performance. | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_convolve_HWC_q7_fast(const q7_t * Im_in, | ||||
|                          const uint16_t dim_im_in, | ||||
|                          const uint16_t ch_im_in, | ||||
|                          const q7_t * wt, | ||||
|                          const uint16_t ch_im_out, | ||||
|                          const uint16_t dim_kernel, | ||||
|                          const uint16_t padding, | ||||
|                          const uint16_t stride, | ||||
|                          const q7_t * bias, | ||||
|                          const uint16_t bias_shift, | ||||
|                          const uint16_t out_shift, | ||||
|                          q7_t * Im_out,  | ||||
|                          const uint16_t dim_im_out,  | ||||
|                          q15_t * bufferA,  | ||||
|                          q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x; | ||||
|  | ||||
|     /* | ||||
|      *  Here we use bufferA as q15_t internally as computation are done with q15_t level | ||||
|      *  im2col are done to output in q15_t format from q7_t input | ||||
|      */ | ||||
|  | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q7_t     *pOut = Im_out; | ||||
|  | ||||
|     if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     /* | ||||
|      *  Here we split the entire matrix into three regions depending on the padding situation | ||||
|      *    Top: i_out_y from 0 to padding - 1 | ||||
|      * Middle: i_out_y from padding to dim_im_out-padding-1 | ||||
|      * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1 | ||||
|      */ | ||||
|  | ||||
|     /* top part */ | ||||
|     for (i_out_y = 0; i_out_y < padding; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         arm_q7_to_q15_reordered_no_shift | ||||
|                             ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, | ||||
|                                                             bufferA, | ||||
|                                                             ch_im_out, | ||||
|                                                             ch_im_in | ||||
|                                                             * | ||||
|                                                             dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* middle part, here we also divide the x into left, mid and right */ | ||||
|     for (; i_out_y < dim_im_out - padding; i_out_y++) | ||||
|     { | ||||
|  | ||||
|         /* left part */ | ||||
|         for (i_out_x = 0; i_out_x < padding; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         arm_q7_to_q15_reordered_no_shift | ||||
|                             ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, | ||||
|                                                             bufferA, | ||||
|                                                             ch_im_out, | ||||
|                                                             ch_im_in | ||||
|                                                             * | ||||
|                                                             dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         /* mid part */ | ||||
|         for (; i_out_x < dim_im_out - padding; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in | ||||
|                                                  + | ||||
|                                                  (i_ker_y * | ||||
|                                                   dim_im_in + | ||||
|                                                   i_out_x * | ||||
|                                                   stride - padding) * ch_im_in, pBuffer, ch_im_in * dim_kernel); | ||||
|                 pBuffer += ch_im_in * dim_kernel; | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, | ||||
|                                                             bufferA, | ||||
|                                                             ch_im_out, | ||||
|                                                             ch_im_in | ||||
|                                                             * | ||||
|                                                             dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         /* right part */ | ||||
|         for (; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         arm_q7_to_q15_reordered_no_shift | ||||
|                             ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, | ||||
|                                                             bufferA, | ||||
|                                                             ch_im_out, | ||||
|                                                             ch_im_in | ||||
|                                                             * | ||||
|                                                             dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     for (; i_out_y < dim_im_out; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         arm_q7_to_q15_reordered_no_shift | ||||
|                             ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, | ||||
|                                                             bufferA, | ||||
|                                                             ch_im_out, | ||||
|                                                             ch_im_in | ||||
|                                                             * | ||||
|                                                             dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* check if there is left-over for compute */ | ||||
|     if (pBuffer != bufferA) | ||||
|     { | ||||
|         const q7_t *pA = wt; | ||||
|         int       i; | ||||
|  | ||||
|         for (i = 0; i < ch_im_out; i++) | ||||
|         { | ||||
|             q31_t     sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|             q15_t    *pB = bufferA; | ||||
|             /* each time it process 4 entries */ | ||||
|             uint16_t  colCnt = ch_im_in * dim_kernel * dim_kernel >> 2; | ||||
|  | ||||
|             while (colCnt) | ||||
|             { | ||||
|  | ||||
|                 q31_t     inA1, inA2; | ||||
|                 q31_t     inB1, inB2; | ||||
|  | ||||
|                 pA = (q7_t *) read_and_pad_reordered((void *)pA, &inA1, &inA2); | ||||
|  | ||||
|                 inB1 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA1, inB1, sum); | ||||
|                 inB2 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA2, inB2, sum); | ||||
|  | ||||
|                 colCnt--; | ||||
|             } | ||||
|             colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3; | ||||
|             while (colCnt) | ||||
|             { | ||||
|                 q7_t      inA1 = *pA++; | ||||
|                 q15_t     inB1 = *pB++; | ||||
|                 sum += inA1 * inB1; | ||||
|                 colCnt--; | ||||
|             } | ||||
|             *pOut = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|             pOut++; | ||||
|  | ||||
|         } | ||||
|  | ||||
|     } | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|  | ||||
|     uint16_t  i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     signed char in_row, in_col; | ||||
|  | ||||
|     if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out; k++) | ||||
|             { | ||||
|                 conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel; n++) | ||||
|                     { | ||||
|                         // if-for implementation | ||||
|                         in_row = stride * j + m - padding; | ||||
|                         in_col = stride * k + n - padding; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += | ||||
|                                     Im_in[(in_row * dim_im_in + in_col) * ch_im_in + | ||||
|                                           l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + | ||||
|                                                                                             n) * ch_im_in + l]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,379 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_convolve_HWC_q7_fast_nonsquare.c | ||||
|  * Description:  Fast Q7 version of convolution (non-sqaure shape) | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @brief Fast Q7 convolution function (non-sqaure shape) | ||||
|  * @param[in]       Im_in        pointer to input tensor | ||||
|  * @param[in]       dim_im_in_x  input tensor dimention x | ||||
|  * @param[in]       dim_im_in_y  input tensor dimention y | ||||
|  * @param[in]       ch_im_in     number of input tensor channels | ||||
|  * @param[in]       wt           pointer to kernel weights | ||||
|  * @param[in]       ch_im_out    number of filters, i.e., output tensor channels | ||||
|  * @param[in]       dim_kernel_x filter kernel size x | ||||
|  * @param[in]       dim_kernel_y filter kernel size y | ||||
|  * @param[in]       padding_x    padding size x | ||||
|  * @param[in]       padding_y    padding size y | ||||
|  * @param[in]       stride_x     convolution stride x | ||||
|  * @param[in]       stride_y     convolution stride y | ||||
|  * @param[in]       bias         pointer to bias | ||||
|  * @param[in]       bias_shift   amount of left-shift for bias | ||||
|  * @param[in]       out_shift    amount of right-shift for output | ||||
|  * @param[in,out]   Im_out       pointer to output tensor | ||||
|  * @param[in]       dim_im_out_x output tensor dimension x | ||||
|  * @param[in]       dim_im_out_y output tensor dimension y | ||||
|  * @param[in,out]   bufferA      pointer to buffer space for input  | ||||
|  * @param[in,out]   bufferB      pointer to buffer space for output | ||||
|  * @return     The function returns either | ||||
|  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
|  * | ||||
|  * This function is the version with full list of optimization tricks, but with | ||||
|  * some contraints: | ||||
|  *   ch_im_in is multiple of 4 | ||||
|  *   ch_im_out is multiple of 2 | ||||
|  */ | ||||
|  | ||||
| arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in, | ||||
|                                               const uint16_t dim_im_in_x, | ||||
|                                               const uint16_t dim_im_in_y, | ||||
|                                               const uint16_t ch_im_in, | ||||
|                                               const q7_t * wt, | ||||
|                                               const uint16_t ch_im_out, | ||||
|                                               const uint16_t dim_kernel_x, | ||||
|                                               const uint16_t dim_kernel_y, | ||||
|                                               const uint16_t padding_x, | ||||
|                                               const uint16_t padding_y, | ||||
|                                               const uint16_t stride_x, | ||||
|                                               const uint16_t stride_y, | ||||
|                                               const q7_t * bias, | ||||
|                                               const uint16_t bias_shift, | ||||
|                                               const uint16_t out_shift, | ||||
|                                               q7_t * Im_out, | ||||
|                                               const uint16_t dim_im_out_x, | ||||
|                                               const uint16_t dim_im_out_y,  | ||||
|                                               q15_t * bufferA,  | ||||
|                                               q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x; | ||||
|  | ||||
|     /* ----------------------- | ||||
|      *  Here we use bufferA as q15_t internally as computation are done with q15_t level | ||||
|      *  im2col are done to output in q15_t format from q7_t input | ||||
|      */ | ||||
|  | ||||
|     q15_t    *pBuffer = bufferA; | ||||
|     q7_t     *pOut = Im_out; | ||||
|  | ||||
|     if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     /* | ||||
|      *  Here we split the entire matrix into three regions depending on the padding situation | ||||
|      *    Top: i_out_y from 0 to padding - 1 | ||||
|      * Middle: i_out_y from padding to dim_im_out-padding-1 | ||||
|      * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1 | ||||
|      */ | ||||
|  | ||||
|     /* top part */ | ||||
|     for (i_out_y = 0; i_out_y < padding_y; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; | ||||
|                  i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; | ||||
|                      i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, | ||||
|                                                          pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, | ||||
|                                                   bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* middle part, here we also divide the x into left, mid and right */ | ||||
|     for (; i_out_y < dim_im_out_y - padding_y; i_out_y++) | ||||
|     { | ||||
|  | ||||
|         /* left part */ | ||||
|         for (i_out_x = 0; i_out_x < padding_x; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; | ||||
|                  i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; | ||||
|                      i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_x < 0 || i_ker_x >= dim_im_in_x) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, | ||||
|                                                          pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, | ||||
|                                                   bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         /* mid part */ | ||||
|         for (; i_out_x < dim_im_out_x - padding_x; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; | ||||
|                  i_ker_y++) | ||||
|             { | ||||
|                 arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + | ||||
|                                                  (i_ker_y * dim_im_in_x + i_out_x * stride_x - padding_x) * ch_im_in, | ||||
|                                                  pBuffer, ch_im_in * dim_kernel_x); | ||||
|                 pBuffer += ch_im_in * dim_kernel_x; | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, | ||||
|                                                   bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         /* right part */ | ||||
|         for (; i_out_x < dim_im_out_x; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; | ||||
|                  i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; | ||||
|                      i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_x < 0 || i_ker_x >= dim_im_in_x) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, | ||||
|                                                          pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, | ||||
|                                                   bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     for (; i_out_y < dim_im_out_y; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) | ||||
|         { | ||||
|             /* This part implements the im2col function */ | ||||
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; | ||||
|                  i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; | ||||
|                      i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) | ||||
|                     { | ||||
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, | ||||
|                                                          pBuffer, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) | ||||
|             { | ||||
|                 pOut = | ||||
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, | ||||
|                                                   bias_shift, out_shift, bias, pOut); | ||||
|                 /* counter reset */ | ||||
|                 pBuffer = bufferA; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* check if there is left-over for compute */ | ||||
|     if (pBuffer != bufferA) | ||||
|     { | ||||
|         const q7_t *pA = wt; | ||||
|         int       i; | ||||
|         for (i = 0; i < ch_im_out; i++) | ||||
|         { | ||||
|             q31_t     sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); | ||||
|             q15_t    *pB = bufferA; | ||||
|             /* basically each time it process 4 entries */ | ||||
|             uint16_t  colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2; | ||||
|  | ||||
|             while (colCnt) | ||||
|             { | ||||
|  | ||||
|                 q31_t     inA1, inA2; | ||||
|                 q31_t     inB1, inB2; | ||||
|  | ||||
|                 pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2); | ||||
|  | ||||
|                 inB1 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA1, inB1, sum); | ||||
|                 inB2 = *__SIMD32(pB)++; | ||||
|                 sum = __SMLAD(inA2, inB2, sum); | ||||
|  | ||||
|                 colCnt--; | ||||
|             } | ||||
|             colCnt = (ch_im_in * dim_kernel_y * dim_kernel_x) & 0x3; | ||||
|             while (colCnt) | ||||
|             { | ||||
|                 q7_t      inA1 = *pA++; | ||||
|                 q15_t     inB1 = *pB++; | ||||
|                 sum += inA1 * inB1; | ||||
|                 colCnt--; | ||||
|             } | ||||
|             *pOut = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|             pOut++; | ||||
|  | ||||
|         } | ||||
|  | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     int       i, j, k, l, m, n; | ||||
|     int       conv_out; | ||||
|     int       in_row, in_col; | ||||
|  | ||||
|     if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) | ||||
|     { | ||||
|         /* check if the input dimension meets the constraints */ | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i = 0; i < ch_im_out; i++) | ||||
|     { | ||||
|         for (j = 0; j < dim_im_out_y; j++) | ||||
|         { | ||||
|             for (k = 0; k < dim_im_out_x; k++) | ||||
|             { | ||||
|                 conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (m = 0; m < dim_kernel_y; m++) | ||||
|                 { | ||||
|                     for (n = 0; n < dim_kernel_x; n++) | ||||
|                     { | ||||
|                         /* if-for implementation */ | ||||
|                         in_row = stride_y * j + m - padding_y; | ||||
|                         in_col = stride_x * k + n - padding_x; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) | ||||
|                         { | ||||
|                             for (l = 0; l < ch_im_in; l++) | ||||
|                             { | ||||
|                                 conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] * | ||||
|                                     wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_x + n) * ch_im_in + l];       | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,418 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_depthwise_separable_conv_HWC_q7.c | ||||
|  * Description:  Q7 depthwise separable convolution function | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @brief Q7 depthwise separable convolution function | ||||
|  * @param[in]       Im_in       pointer to input tensor | ||||
|  * @param[in]       dim_im_in   input tensor dimention | ||||
|  * @param[in]       ch_im_in    number of input tensor channels | ||||
|  * @param[in]       wt          pointer to kernel weights | ||||
|  * @param[in]       ch_im_out   number of filters, i.e., output tensor channels | ||||
|  * @param[in]       dim_kernel  filter kernel size | ||||
|  * @param[in]       padding     padding sizes | ||||
|  * @param[in]       stride      convolution stride | ||||
|  * @param[in]       bias        pointer to bias | ||||
|  * @param[in]       bias_shift  amount of left-shift for bias | ||||
|  * @param[in]       out_shift   amount of right-shift for output | ||||
|  * @param[in,out]   Im_out      pointer to output tensor | ||||
|  * @param[in]       dim_im_out  output tensor dimension | ||||
|  * @param[in,out]   bufferA     pointer to buffer space for input | ||||
|  * @param[in,out]   bufferB     pointer to buffer space for output | ||||
|  * @return     The function returns either | ||||
|  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
|  * | ||||
|  * @details | ||||
|  * | ||||
|  * <b>Buffer size:</b> | ||||
|  * | ||||
|  * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel | ||||
|  * | ||||
|  * bufferB size: 0 | ||||
|  * | ||||
|  * <b>Input dimension constraints:</b> | ||||
|  * | ||||
|  * ch_im_in equals ch_im_out | ||||
|  * | ||||
|  * Implementation: | ||||
|  * There are 3 nested loop here: | ||||
|  * Inner loop: calculate each output value with MAC instruction over an accumulator | ||||
|  * Mid   loop: loop over different output channel | ||||
|  * Outer loop: loop over different output (x, y) | ||||
|  */ | ||||
|  | ||||
| arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in, | ||||
|                                                const uint16_t dim_im_in, | ||||
|                                                const uint16_t ch_im_in, | ||||
|                                                const q7_t * wt, | ||||
|                                                const uint16_t ch_im_out, | ||||
|                                                const uint16_t dim_kernel, | ||||
|                                                const uint16_t padding, | ||||
|                                                const uint16_t stride, | ||||
|                                                const q7_t * bias, | ||||
|                                                const uint16_t bias_shift, | ||||
|                                                const uint16_t out_shift, | ||||
|                                                q7_t * Im_out,  | ||||
|                                                const uint16_t dim_im_out,  | ||||
|                                                q15_t * bufferA,  | ||||
|                                                q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     int16_t   i_out_y, i_out_x; | ||||
|     int16_t   i_ker_y, i_ker_x; | ||||
|     q7_t     *colBuffer = (q7_t *) bufferA; | ||||
|     q7_t     *pBuffer = colBuffer; | ||||
|     const q7_t *pBias = bias; | ||||
|     q7_t     *pOut = Im_out; | ||||
|     uint16_t  rowCnt; | ||||
|     uint16_t  row_shift; | ||||
|  | ||||
|     /* do some checking here, basically ch_im_in == ch_im_out */ | ||||
|     if (ch_im_in != ch_im_out) | ||||
|     { | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             /* we first do im2col here */ | ||||
|             for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) | ||||
|                     { | ||||
|                         /* arm_fill_q7(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ | ||||
|                         memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             /* we will do the computation here for each channel */ | ||||
|             rowCnt = ch_im_out >> 2; | ||||
|             row_shift = 0; | ||||
|             pBias = bias; | ||||
|  | ||||
|             while (rowCnt) | ||||
|             { | ||||
|                 q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|                 uint16_t  colCnt = (dim_kernel * dim_kernel) >> 1; | ||||
|                 q7_t     *pB = colBuffer + row_shift; | ||||
|                 const q7_t *pA = wt + row_shift; | ||||
|                 row_shift += 4; | ||||
|  | ||||
| #ifdef USE_INTRINSIC | ||||
|  | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|  | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     q31_t     inA1, inA2, inB1, inB2, opA, opB; | ||||
|  | ||||
|                     inB1 = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     opB = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     inB2 = __PKHTB(opB, inB1, 16); | ||||
|                     inB1 = __PKHBT(inB1, opB, 16); | ||||
|                     inA1 = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     opB = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     inA2 = __PKHTB(opB, inA1, 16); | ||||
|                     inA1 = __PKHBT(inA1, opB, 16); | ||||
|                     opA = __SXTB16(inA1); | ||||
|                     opB = __SXTB16(inB1); | ||||
|                     sum = __SMLAD(opA, opB, sum); | ||||
|                     opA = __SXTB16(__ROR(inA1, 8)); | ||||
|                     opB = __SXTB16(__ROR(inB1, 8)); | ||||
|                     sum2 = __SMLAD(opA, opB, sum2); | ||||
|                     opA = __SXTB16(inA2); | ||||
|                     opB = __SXTB16(inB2); | ||||
|                     sum3 = __SMLAD(opA, opB, sum3); | ||||
|                     opA = __SXTB16(__ROR(inA2, 8)); | ||||
|                     opB = __SXTB16(__ROR(inB2, 8)); | ||||
|                     sum4 = __SMLAD(opA, opB, sum4); | ||||
|                     colCnt--; | ||||
|                 } | ||||
| #else | ||||
|  | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     q31_t     inA1, inA2, inB1, inB2, opA, opB; | ||||
|  | ||||
|                     inB1 = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     opB = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     inB2 = __PKHBT(opB, inB1, 16); | ||||
|                     inB1 = __PKHTB(inB1, opB, 16); | ||||
|                     inA1 = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     opB = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     inA2 = __PKHBT(opB, inA1, 16); | ||||
|                     inA1 = __PKHTB(inA1, opB, 16); | ||||
|                     opA = __SXTB16(inA1); | ||||
|                     opB = __SXTB16(inB1); | ||||
|                     sum2 = __SMLAD(opA, opB, sum2); | ||||
|                     opA = __SXTB16(__ROR(inA1, 8)); | ||||
|                     opB = __SXTB16(__ROR(inB1, 8)); | ||||
|                     sum = __SMLAD(opA, opB, sum); | ||||
|                     opA = __SXTB16(inA2); | ||||
|                     opB = __SXTB16(inB2); | ||||
|                     sum4 = __SMLAD(opA, opB, sum4); | ||||
|                     opA = __SXTB16(__ROR(inA2, 8)); | ||||
|                     opB = __SXTB16(__ROR(inB2, 8)); | ||||
|                     sum3 = __SMLAD(opA, opB, sum3); | ||||
|                     colCnt--; | ||||
|                 } | ||||
|  | ||||
| #endif                          /* ARM_MATH_BIG_ENDIAN */ | ||||
|  | ||||
| #else | ||||
|  | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|                 /* | ||||
|                  *   r0    r1    r2    r3    r4   r5 | ||||
|                  *  inA1, inA2, inB1, inB2, opA, opB | ||||
|                  */ | ||||
|  | ||||
|                 asm volatile ("COL_LOOP_%=:\n" | ||||
|                               "ldr.w r2, [%[pB], #0]\n" | ||||
|                               "add.w %[pB], %[pB], %[ch_im_in]\n" | ||||
|                               "ldr.w r5, [%[pB], #0]\n" | ||||
|                               "add.w %[pB], %[pB], %[ch_im_in]\n" | ||||
|                               "pkhtb r3, r5, r2, ASR #16\n" | ||||
|                               "pkhbt r2, r2, r5, LSL #16\n" | ||||
|                               "ldr.w r0, [%[pA], #0]\n" | ||||
|                               "add.w %[pA], %[pA], %[ch_im_in]\n" | ||||
|                               "ldr.w r5, [%[pA], #0]\n" | ||||
|                               "add.w %[pA], %[pA], %[ch_im_in]\n" | ||||
|                               "pkhtb r1, r5, r0, ASR #16\n" | ||||
|                               "pkhbt r0, r0, r5, LSL #16\n" | ||||
|                               "sxtb16 r4, r0\n" | ||||
|                               "sxtb16 r5, r2\n" | ||||
|                               "smlad %[sum], r4, r5, %[sum]\n" | ||||
|                               "mov.w r4, r0, ror #8\n" | ||||
|                               "mov.w r5, r2, ror #8\n" | ||||
|                               "sxtb16 r4, r4\n" | ||||
|                               "sxtb16 r5, r5\n" | ||||
|                               "smlad %[sum2], r4, r5, %[sum2]\n" | ||||
|                               "sxtb16 r4, r1\n" | ||||
|                               "sxtb16 r5, r3\n" | ||||
|                               "smlad %[sum3], r4, r5, %[sum3]\n" | ||||
|                               "mov.w r4, r1, ror #8\n" | ||||
|                               "mov.w r5, r3, ror #8\n" | ||||
|                               "sxtb16 r4, r4\n" | ||||
|                               "sxtb16 r5, r5\n" | ||||
|                               "smlad %[sum4], r4, r5, %[sum4]\n" | ||||
|                               "subs %[colCnt], #1\n" | ||||
|                               "bne COL_LOOP_%=\n":[sum] | ||||
|                               "+r"(sum),[sum2] "+r"(sum2), | ||||
|                               [sum3] "+r"(sum3), | ||||
|                               [sum4] "+r"(sum4),[pB] "+r"(pB), | ||||
|                               [pA] "+r"(pA):[colCnt] | ||||
|                               "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); | ||||
| #else | ||||
|                 /* | ||||
|                  *  r0    r1    r2    r3    r4   r5 | ||||
|                  * inA1, inA2, inB1, inB2, opA, opB | ||||
|                  */ | ||||
|                 asm volatile ("COL_LOOP_%=:\n" | ||||
|                               "ldr.w r2, [%[pB], #0]\n" | ||||
|                               "add.w %[pB], %[pB], %[ch_im_in]\n" | ||||
|                               "ldr.w r5, [%[pB], #0]\n" | ||||
|                               "add.w %[pB], %[pB], %[ch_im_in]\n" | ||||
|                               "pkhbt r3, r5, r2, LSL #16\n" | ||||
|                               "pkhtb r2, r2, r5, ASR #16\n" | ||||
|                               "ldr.w r0, [%[pA], #0]\n" | ||||
|                               "add.w %[pA], %[pA], %[ch_im_in]\n" | ||||
|                               "ldr.w r5, [%[pA], #0]\n" | ||||
|                               "add.w %[pA], %[pA], %[ch_im_in]\n" | ||||
|                               "pkhbt r1, r5, r0, LSL #16\n" | ||||
|                               "pkhtb r0, r0, r5, ASR #16\n" | ||||
|                               "sxtb16 r4, r0\n" | ||||
|                               "sxtb16 r5, r2\n" | ||||
|                               "smlad %[sum2], r4, r5, %[sum2]\n" | ||||
|                               "mov.w r4, r0, ror #8\n" | ||||
|                               "mov.w r5, r2, ror #8\n" | ||||
|                               "sxtb16 r4, r4\n" | ||||
|                               "sxtb16 r5, r5\n" | ||||
|                               "smlad %[sum], r4, r5, %[sum]\n" | ||||
|                               "sxtb16 r4, r1\n" | ||||
|                               "sxtb16 r5, r3\n" | ||||
|                               "smlad %[sum4], r4, r5, %[sum4]\n" | ||||
|                               "mov.w r4, r1, ror #8\n" | ||||
|                               "mov.w r5, r3, ror #8\n" | ||||
|                               "sxtb16 r4, r4\n" | ||||
|                               "sxtb16 r5, r5\n" | ||||
|                               "smlad %[sum3], r4, r5, %[sum3]\n" | ||||
|                               "subs %[colCnt], #1\n" | ||||
|                               "bne COL_LOOP_%=\n":[sum] | ||||
|                               "+r"(sum),[sum2] "+r"(sum2), | ||||
|                               [sum3] "+r"(sum3), | ||||
|                               [sum4] "+r"(sum4),[pB] "+r"(pB), | ||||
|                               [pA] "+r"(pA):[colCnt] | ||||
|                               "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); | ||||
|  | ||||
| #endif                          /* ARM_MATH_BIG_ENDIAN */ | ||||
|  | ||||
| #endif                          /* USE_INTRINSIC */ | ||||
|  | ||||
|                 colCnt = (dim_kernel * dim_kernel) & 0x1; | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     union arm_nnword inA, inB; | ||||
|                     inA.word = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     inB.word = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     sum += inA.bytes[0] * inB.bytes[0]; | ||||
|                     sum2 += inA.bytes[1] * inB.bytes[1]; | ||||
|                     sum3 += inA.bytes[2] * inB.bytes[2]; | ||||
|                     sum4 += inA.bytes[3] * inB.bytes[3]; | ||||
|                     colCnt--; | ||||
|                 } | ||||
|  | ||||
|                 *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|                 *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8); | ||||
|                 *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); | ||||
|                 *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8); | ||||
|  | ||||
|                 rowCnt--; | ||||
|             } | ||||
|  | ||||
|             rowCnt = ch_im_out & 0x3; | ||||
|             while (rowCnt) | ||||
|             { | ||||
|                 q7_t     *pB = colBuffer + row_shift; | ||||
|                 const q7_t *pA = wt + row_shift; | ||||
|                 q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 uint16_t  colCnt = (dim_kernel * dim_kernel); | ||||
|  | ||||
|                 row_shift += 1; | ||||
|  | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     q7_t      A1 = *pA; | ||||
|                     q7_t      B1 = *pB; | ||||
|                     pA += ch_im_in; | ||||
|                     pB += ch_im_in; | ||||
|                     sum += A1 * B1; | ||||
|  | ||||
|                     colCnt--; | ||||
|                 } | ||||
|                 *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|                 rowCnt--; | ||||
|             } | ||||
|  | ||||
|             /* clear counter and pointers */ | ||||
|             pBuffer = colBuffer; | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     int       i_out_y, i_out_x, i_ch_out, i_ker_x, i_ker_y; | ||||
|     int       conv_out; | ||||
|  | ||||
|     /* do some checking here, basically ch_im_in == ch_im_out */ | ||||
|     if (ch_im_in != ch_im_out) | ||||
|     { | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) | ||||
|         { | ||||
|             for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++) | ||||
|             { | ||||
|                 // for each output | ||||
|                 conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (i_ker_y = 0; i_ker_y < dim_kernel; i_ker_y++) | ||||
|                 { | ||||
|                     for (i_ker_x = 0; i_ker_x < dim_kernel; i_ker_x++) | ||||
|                     { | ||||
|                         int       in_row = stride * i_out_y + i_ker_y - padding; | ||||
|                         int       in_col = stride * i_out_x + i_ker_x - padding; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) | ||||
|                         { | ||||
|                             conv_out += | ||||
|                                 Im_in[(in_row * | ||||
|                                        dim_im_in + | ||||
|                                        in_col) * | ||||
|                                       ch_im_in + | ||||
|                                       i_ch_out] * wt[(i_ker_y * dim_kernel + i_ker_x) * ch_im_out + i_ch_out]; | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[(i_out_y * dim_im_out + | ||||
|                         i_out_x) * ch_im_out + i_ch_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
|  | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,411 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_depthwise_separable_conv_HWC_q7_nonsquare.c | ||||
|  * Description:  Q7 depthwise separable convolution function (non-square shape) | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNConv | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @brief Q7 depthwise separable convolution function (non-square shape) | ||||
|  * @param[in]       Im_in         pointer to input tensor | ||||
|  * @param[in]       dim_im_in_x   input tensor dimention x | ||||
|  * @param[in]       dim_im_in_y   input tensor dimention y | ||||
|  * @param[in]       ch_im_in      number of input tensor channels | ||||
|  * @param[in]       wt            pointer to kernel weights | ||||
|  * @param[in]       ch_im_out     number of filters, i.e., output tensor channels | ||||
|  * @param[in]       dim_kernel_x  filter kernel size x | ||||
|  * @param[in]       dim_kernel_y  filter kernel size y | ||||
|  * @param[in]       padding_x     padding sizes x | ||||
|  * @param[in]       padding_y     padding sizes y | ||||
|  * @param[in]       stride_x      convolution stride x | ||||
|  * @param[in]       stride_y      convolution stride y | ||||
|  * @param[in]       bias          pointer to bias | ||||
|  * @param[in]       bias_shift    amount of left-shift for bias | ||||
|  * @param[in]       out_shift     amount of right-shift for output | ||||
|  * @param[in,out]   Im_out        pointer to output tensor | ||||
|  * @param[in]       dim_im_out_x  output tensor dimension x | ||||
|  * @param[in]       dim_im_out_y  output tensor dimension y | ||||
|  * @param[in,out]   bufferA       pointer to buffer space for input  | ||||
|  * @param[in,out]   bufferB       pointer to buffer space for output | ||||
|  * @return     The function returns either | ||||
|  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | ||||
|  * | ||||
|  * This function is the version with full list of optimization tricks, but with | ||||
|  * some contraints: | ||||
|  *   ch_im_in is multiple of 2 | ||||
|  *   ch_im_out is multiple of 2 | ||||
|  */ | ||||
|  | ||||
| arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in, | ||||
|                                                          const uint16_t dim_im_in_x, | ||||
|                                                          const uint16_t dim_im_in_y, | ||||
|                                                          const uint16_t ch_im_in, | ||||
|                                                          const q7_t * wt, | ||||
|                                                          const uint16_t ch_im_out, | ||||
|                                                          const uint16_t dim_kernel_x, | ||||
|                                                          const uint16_t dim_kernel_y, | ||||
|                                                          const uint16_t padding_x, | ||||
|                                                          const uint16_t padding_y, | ||||
|                                                          const uint16_t stride_x, | ||||
|                                                          const uint16_t stride_y, | ||||
|                                                          const q7_t * bias, | ||||
|                                                          const uint16_t bias_shift, | ||||
|                                                          const uint16_t out_shift, | ||||
|                                                          q7_t * Im_out, | ||||
|                                                          const uint16_t dim_im_out_x, | ||||
|                                                          const uint16_t dim_im_out_y,  | ||||
|                                                          q15_t * bufferA,  | ||||
|                                                          q7_t * bufferB) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
| /* | ||||
|  * Implementation: | ||||
|  * There are 3 nested loop here: | ||||
|  * Inner loop: calculate each output value with MAC instruction over an accumulator | ||||
|  * Mid   loop: loop over different output channel | ||||
|  * Outer loop: loop over different output (x, y) | ||||
|  * | ||||
|  */ | ||||
|  | ||||
|     int16_t   i_out_y, i_out_x; | ||||
|     int16_t   i_ker_y, i_ker_x; | ||||
|     q7_t     *colBuffer = (q7_t *) bufferA; | ||||
|     q7_t     *pBuffer = colBuffer; | ||||
|     const q7_t *pBias = bias; | ||||
|     q7_t     *pOut = Im_out; | ||||
|     uint16_t  rowCnt; | ||||
|     uint16_t  row_shift; | ||||
|  | ||||
|     /* do some checking here, basically ch_im_in == ch_im_out */ | ||||
|     if (ch_im_in != ch_im_out) | ||||
|     { | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) | ||||
|         { | ||||
|             /* we first do im2col here */ | ||||
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; | ||||
|                  i_ker_y++) | ||||
|             { | ||||
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; | ||||
|                      i_ker_x++) | ||||
|                 { | ||||
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) | ||||
|                     { | ||||
|                         /* arm_fill_q7(0, pBuffer, ch_im_in); */ | ||||
|                         memset(pBuffer, 0, ch_im_in); | ||||
|                     } else | ||||
|                     { | ||||
|                         /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ | ||||
|                         memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, ch_im_in); | ||||
|                     } | ||||
|                     pBuffer += ch_im_in; | ||||
|                 } | ||||
|             } | ||||
|  | ||||
|             /* we will do the computation here for each channel */ | ||||
|             rowCnt = ch_im_out >> 2; | ||||
|             row_shift = 0; | ||||
|             pBias = bias; | ||||
|  | ||||
|             while (rowCnt) | ||||
|             { | ||||
|                 q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|                 uint16_t  colCnt = (dim_kernel_x * dim_kernel_y) >> 1; | ||||
|                 q7_t     *pB = colBuffer + row_shift; | ||||
|                 const q7_t *pA = wt + row_shift; | ||||
|                 row_shift += 4; | ||||
|  | ||||
| #ifdef USE_INTRINSIC | ||||
|  | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|  | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     q31_t     inA1, inA2, inB1, inB2, opA, opB; | ||||
|  | ||||
|                     inB1 = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     opB = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     inB2 = __PKHTB(opB, inB1, 16); | ||||
|                     inB1 = __PKHBT(inB1, opB, 16); | ||||
|                     inA1 = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     opB = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     inA2 = __PKHTB(opB, inA1, 16); | ||||
|                     inA1 = __PKHBT(inA1, opB, 16); | ||||
|                     opA = __SXTB16(inA1); | ||||
|                     opB = __SXTB16(inB1); | ||||
|                     sum = __SMLAD(opA, opB, sum); | ||||
|                     opA = __SXTB16(__ROR(inA1, 8)); | ||||
|                     opB = __SXTB16(__ROR(inB1, 8)); | ||||
|                     sum2 = __SMLAD(opA, opB, sum2); | ||||
|                     opA = __SXTB16(inA2); | ||||
|                     opB = __SXTB16(inB2); | ||||
|                     sum3 = __SMLAD(opA, opB, sum3); | ||||
|                     opA = __SXTB16(__ROR(inA2, 8)); | ||||
|                     opB = __SXTB16(__ROR(inB2, 8)); | ||||
|                     sum4 = __SMLAD(opA, opB, sum4); | ||||
|                     colCnt--; | ||||
|                 } | ||||
| #else | ||||
|  | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     q31_t     inA1, inA2, inB1, inB2, opA, opB; | ||||
|  | ||||
|                     inB1 = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     opB = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     inB2 = __PKHBT(opB, inB1, 16); | ||||
|                     inB1 = __PKHTB(inB1, opB, 16); | ||||
|                     inA1 = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     opB = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     inA2 = __PKHBT(opB, inA1, 16); | ||||
|                     inA1 = __PKHTB(inA1, opB, 16); | ||||
|                     opA = __SXTB16(inA1); | ||||
|                     opB = __SXTB16(inB1); | ||||
|                     sum2 = __SMLAD(opA, opB, sum2); | ||||
|                     opA = __SXTB16(__ROR(inA1, 8)); | ||||
|                     opB = __SXTB16(__ROR(inB1, 8)); | ||||
|                     sum = __SMLAD(opA, opB, sum); | ||||
|                     opA = __SXTB16(inA2); | ||||
|                     opB = __SXTB16(inB2); | ||||
|                     sum4 = __SMLAD(opA, opB, sum4); | ||||
|                     opA = __SXTB16(__ROR(inA2, 8)); | ||||
|                     opB = __SXTB16(__ROR(inB2, 8)); | ||||
|                     sum3 = __SMLAD(opA, opB, sum3); | ||||
|                     colCnt--; | ||||
|                 } | ||||
|  | ||||
| #endif                          /* ARM_MATH_BIG_ENDIAN */ | ||||
|  | ||||
| #else | ||||
|  | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|                 //  r0    r1    r2    r3    r4   r5 | ||||
|                 // inA1, inA2, inB1, inB2, opA, opB | ||||
|                 asm volatile ("COL_LOOP:\n" | ||||
|                               "ldr.w r2, [%[pB], #0]\n" | ||||
|                               "add.w %[pB], %[pB], %[ch_im_in]\n" | ||||
|                               "ldr.w r5, [%[pB], #0]\n" | ||||
|                               "add.w %[pB], %[pB], %[ch_im_in]\n" | ||||
|                               "pkhtb r3, r5, r2, ASR #16\n" | ||||
|                               "pkhbt r2, r2, r5, LSL #16\n" | ||||
|                               "ldr.w r0, [%[pA], #0]\n" | ||||
|                               "add.w %[pA], %[pA], %[ch_im_in]\n" | ||||
|                               "ldr.w r5, [%[pA], #0]\n" | ||||
|                               "add.w %[pA], %[pA], %[ch_im_in]\n" | ||||
|                               "pkhtb r1, r5, r0, ASR #16\n" | ||||
|                               "pkhbt r0, r0, r5, LSL #16\n" | ||||
|                               "sxtb16 r4, r0\n" | ||||
|                               "sxtb16 r5, r2\n" | ||||
|                               "smlad %[sum], r4, r5, %[sum]\n" | ||||
|                               "mov.w r4, r0, ror #8\n" | ||||
|                               "mov.w r5, r2, ror #8\n" | ||||
|                               "sxtb16 r4, r4\n" | ||||
|                               "sxtb16 r5, r5\n" | ||||
|                               "smlad %[sum2], r4, r5, %[sum2]\n" | ||||
|                               "sxtb16 r4, r1\n" | ||||
|                               "sxtb16 r5, r3\n" | ||||
|                               "smlad %[sum3], r4, r5, %[sum3]\n" | ||||
|                               "mov.w r4, r1, ror #8\n" | ||||
|                               "mov.w r5, r3, ror #8\n" | ||||
|                               "sxtb16 r4, r4\n" | ||||
|                               "sxtb16 r5, r5\n" | ||||
|                               "smlad %[sum4], r4, r5, %[sum4]\n" | ||||
|                               "subs %[colCnt], #1\n" | ||||
|                               "bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3), | ||||
|                               [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt), | ||||
|                               [ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); | ||||
| #else | ||||
|                 //  r0    r1    r2    r3    r4   r5 | ||||
|                 // inA1, inA2, inB1, inB2, opA, opB | ||||
|                 asm volatile ("COL_LOOP:\n" | ||||
|                               "ldr.w r2, [%[pB], #0]\n" | ||||
|                               "add.w %[pB], %[pB], %[ch_im_in]\n" | ||||
|                               "ldr.w r5, [%[pB], #0]\n" | ||||
|                               "add.w %[pB], %[pB], %[ch_im_in]\n" | ||||
|                               "pkhbt r3, r5, r2, LSL #16\n" | ||||
|                               "pkhtb r2, r2, r5, ASR #16\n" | ||||
|                               "ldr.w r0, [%[pA], #0]\n" | ||||
|                               "add.w %[pA], %[pA], %[ch_im_in]\n" | ||||
|                               "ldr.w r5, [%[pA], #0]\n" | ||||
|                               "add.w %[pA], %[pA], %[ch_im_in]\n" | ||||
|                               "pkhbt r1, r5, r0, LSL #16\n" | ||||
|                               "pkhtb r0, r0, r5, ASR #16\n" | ||||
|                               "sxtb16 r4, r0\n" | ||||
|                               "sxtb16 r5, r2\n" | ||||
|                               "smlad %[sum2], r4, r5, %[sum2]\n" | ||||
|                               "mov.w r4, r0, ror #8\n" | ||||
|                               "mov.w r5, r2, ror #8\n" | ||||
|                               "sxtb16 r4, r4\n" | ||||
|                               "sxtb16 r5, r5\n" | ||||
|                               "smlad %[sum], r4, r5, %[sum]\n" | ||||
|                               "sxtb16 r4, r1\n" | ||||
|                               "sxtb16 r5, r3\n" | ||||
|                               "smlad %[sum4], r4, r5, %[sum4]\n" | ||||
|                               "mov.w r4, r1, ror #8\n" | ||||
|                               "mov.w r5, r3, ror #8\n" | ||||
|                               "sxtb16 r4, r4\n" | ||||
|                               "sxtb16 r5, r5\n" | ||||
|                               "smlad %[sum3], r4, r5, %[sum3]\n" | ||||
|                               "subs %[colCnt], #1\n" | ||||
|                               "bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3), | ||||
|                               [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt), | ||||
|                               [ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); | ||||
| #endif                          /*ARM_MATH_BIG_ENDIAN */ | ||||
|  | ||||
| #endif                          /* USE_INTRINSIC */ | ||||
|  | ||||
|                 colCnt = (dim_kernel_x * dim_kernel_y) & 0x1; | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     union arm_nnword inA, inB; | ||||
|                     inA.word = *__SIMD32(pA); | ||||
|                     pA += ch_im_in; | ||||
|                     inB.word = *__SIMD32(pB); | ||||
|                     pB += ch_im_in; | ||||
|                     sum += inA.bytes[0] * inB.bytes[0]; | ||||
|                     sum2 += inA.bytes[1] * inB.bytes[1]; | ||||
|                     sum3 += inA.bytes[2] * inB.bytes[2]; | ||||
|                     sum4 += inA.bytes[3] * inB.bytes[3]; | ||||
|                     colCnt--; | ||||
|                 } | ||||
|  | ||||
|                 *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|                 *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8); | ||||
|                 *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); | ||||
|                 *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8); | ||||
|  | ||||
|                 rowCnt--; | ||||
|             } | ||||
|  | ||||
|             rowCnt = ch_im_out & 0x3; | ||||
|             while (rowCnt) | ||||
|             { | ||||
|                 q7_t     *pB = colBuffer + row_shift; | ||||
|                 const q7_t *pA = wt + row_shift; | ||||
|                 q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 uint16_t  colCnt = (dim_kernel_x * dim_kernel_y); | ||||
|  | ||||
|                 row_shift += 1; | ||||
|  | ||||
|                 while (colCnt) | ||||
|                 { | ||||
|                     q7_t      A1 = *pA; | ||||
|                     q7_t      B1 = *pB; | ||||
|                     pA += ch_im_in; | ||||
|                     pB += ch_im_in; | ||||
|                     sum += A1 * B1; | ||||
|  | ||||
|                     colCnt--; | ||||
|                 } | ||||
|                 *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|                 rowCnt--; | ||||
|             } | ||||
|  | ||||
|             // clear counter and pointers | ||||
|             pBuffer = colBuffer; | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     int       i_out_y, i_out_x, i_ch_out; | ||||
|     int       i_ker_y, i_ker_x;  | ||||
|  | ||||
|     /* do some checking here, basically ch_im_in == ch_im_out */ | ||||
|     if (ch_im_in != ch_im_out) | ||||
|     { | ||||
|         return ARM_MATH_SIZE_MISMATCH; | ||||
|     } | ||||
|  | ||||
|     for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) | ||||
|     { | ||||
|         for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) | ||||
|         { | ||||
|             for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++) | ||||
|             { | ||||
|                 // for each output  | ||||
|                 int       conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift); | ||||
|                 for (i_ker_y = 0; i_ker_y < dim_kernel_y; i_ker_y++) | ||||
|                 { | ||||
|                     for (i_ker_x = 0; i_ker_x < dim_kernel_x; i_ker_x++) | ||||
|                     { | ||||
|                         int       in_row = stride_y * i_out_y + i_ker_y - padding_y; | ||||
|                         int       in_col = stride_x * i_out_x + i_ker_x - padding_x; | ||||
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) | ||||
|                         { | ||||
|                             conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + i_ch_out] *                         | ||||
|                                 wt[(i_ker_y * dim_kernel_x + i_ker_x) * ch_im_out + i_ch_out]; | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[(i_out_y * dim_im_out_x + i_out_x) * ch_im_out + i_ch_out] = | ||||
|                     (q7_t) __SSAT((conv_out >> out_shift), 8); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return ARM_MATH_SUCCESS; | ||||
|  | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNConv group | ||||
|  */ | ||||
| @@ -0,0 +1,187 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_nn_mat_mult_kernel_q7_q15.c | ||||
|  * Description:  Matrix-multiplication function for convolution | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
|   /** | ||||
|    * @brief Matrix-multiplication function for convolution | ||||
|    * @param[in]       pA          pointer to operand A | ||||
|    * @param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors | ||||
|    * @param[in]       ch_im_out   numRow of A | ||||
|    * @param[in]       numCol_A    numCol of A | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in]       bias        the bias | ||||
|    * @param[in,out]   pOut        pointer to output | ||||
|    * @return     The function returns the incremented output pointer | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * This function does the matrix multiplication with weight matrix | ||||
|    * and 2 columns from im2col.  | ||||
|    */ | ||||
|  | ||||
| q7_t     *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA, | ||||
|                                         const q15_t * pInBuffer, | ||||
|                                         const uint16_t ch_im_out, | ||||
|                                         const uint16_t numCol_A, | ||||
|                                         const uint16_t bias_shift, | ||||
|                                         const uint16_t out_shift,  | ||||
|                                         const q7_t * bias,  | ||||
|                                         q7_t * pOut) | ||||
| { | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* set up the second output pointers */ | ||||
|     q7_t     *pOut2 = pOut + ch_im_out; | ||||
|     const q7_t *pBias = bias; | ||||
|  | ||||
|     uint16_t  rowCnt = ch_im_out >> 1; | ||||
|     /* this loop over rows in A */ | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         /* setup pointers for B */ | ||||
|         const q15_t *pB = pInBuffer; | ||||
|         const q15_t *pB2 = pB + numCol_A; | ||||
|  | ||||
|         /* align the second pointer for A */ | ||||
|         const q7_t *pA2 = pA + numCol_A; | ||||
|  | ||||
|         /* init the sum with bias */ | ||||
|         q31_t     sum =  ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum3 = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|         uint16_t  colCnt = numCol_A >> 2; | ||||
|         /* accumulate over the vector */ | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inA11, inA12, inA21, inA22; | ||||
|             q31_t     inB1 = *__SIMD32(pB)++; | ||||
|             q31_t     inB2 = *__SIMD32(pB2)++; | ||||
|  | ||||
|             pA = (q7_t *) read_and_pad((void *)pA, &inA11, &inA12); | ||||
|             pA2 = (q7_t *) read_and_pad((void *)pA2, &inA21, &inA22); | ||||
|  | ||||
|             sum = __SMLAD(inA11, inB1, sum); | ||||
|             sum2 = __SMLAD(inA11, inB2, sum2); | ||||
|             sum3 = __SMLAD(inA21, inB1, sum3); | ||||
|             sum4 = __SMLAD(inA21, inB2, sum4); | ||||
|  | ||||
|             inB1 = *__SIMD32(pB)++; | ||||
|             inB2 = *__SIMD32(pB2)++; | ||||
|  | ||||
|             sum = __SMLAD(inA12, inB1, sum); | ||||
|             sum2 = __SMLAD(inA12, inB2, sum2); | ||||
|             sum3 = __SMLAD(inA22, inB1, sum3); | ||||
|             sum4 = __SMLAD(inA22, inB2, sum4); | ||||
|  | ||||
|             colCnt--; | ||||
|         }                       /* while over colCnt */ | ||||
|         colCnt = numCol_A & 0x3; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q7_t      inA1 = *pA++; | ||||
|             q15_t     inB1 = *pB++; | ||||
|             q7_t      inA2 = *pA2++; | ||||
|             q15_t     inB2 = *pB2++; | ||||
|  | ||||
|             sum += inA1 * inB1; | ||||
|             sum2 += inA1 * inB2; | ||||
|             sum3 += inA2 * inB1; | ||||
|             sum4 += inA2 * inB2; | ||||
|             colCnt--; | ||||
|         }                       /* while over colCnt */ | ||||
|         *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|         *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); | ||||
|         *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8); | ||||
|         *pOut2++ = (q7_t) __SSAT((sum4 >> out_shift), 8); | ||||
|  | ||||
|         /* skip the row computed with A2 */ | ||||
|         pA += numCol_A; | ||||
|         rowCnt--; | ||||
|     }                           /* for over ch_im_out */ | ||||
|  | ||||
|     /* compute left-over row if any */ | ||||
|     if (ch_im_out & 0x1) | ||||
|     { | ||||
|         /* setup pointers for B */ | ||||
|         const q15_t *pB = pInBuffer; | ||||
|         const q15_t *pB2 = pB + numCol_A; | ||||
|  | ||||
|         /* load the bias */ | ||||
|         q31_t     sum = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|         uint16_t  colCnt = numCol_A >> 2; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inA11, inA12; | ||||
|             q31_t     inB1 = *__SIMD32(pB)++; | ||||
|             q31_t     inB2 = *__SIMD32(pB2)++; | ||||
|  | ||||
|             pA = (q7_t *) read_and_pad((void *)pA, &inA11, &inA12); | ||||
|  | ||||
|             sum = __SMLAD(inA11, inB1, sum); | ||||
|             sum2 = __SMLAD(inA11, inB2, sum2); | ||||
|  | ||||
|             inB1 = *__SIMD32(pB)++; | ||||
|             inB2 = *__SIMD32(pB2)++; | ||||
|             sum = __SMLAD(inA12, inB1, sum); | ||||
|             sum2 = __SMLAD(inA12, inB2, sum2); | ||||
|  | ||||
|             colCnt--; | ||||
|         } | ||||
|         colCnt = numCol_A & 0x3; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q7_t      inA1 = *pA++; | ||||
|             q15_t     inB1 = *pB++; | ||||
|             q15_t     inB2 = *pB2++; | ||||
|  | ||||
|             sum += inA1 * inB1; | ||||
|             sum2 += inA1 * inB2; | ||||
|             colCnt--; | ||||
|         } | ||||
|  | ||||
|         *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|         *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8); | ||||
|     } | ||||
|  | ||||
|     pOut += ch_im_out; | ||||
|  | ||||
|     /* return the new output pointer with offset */ | ||||
|     return pOut; | ||||
| #else | ||||
|     /* To be completed */ | ||||
|     return NULL; | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
| } | ||||
| @@ -0,0 +1,138 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_nn_mat_mult_kernel_q7_q15_reordered.c | ||||
|  * Description:  Matrix-multiplication function for convolution with reordered columns | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_nnfunctions.h" | ||||
| #include "arm_math.h" | ||||
|  | ||||
|   /** | ||||
|    * @brief Matrix-multiplication function for convolution with reordered columns | ||||
|    * @param[in]       pA          pointer to operand A | ||||
|    * @param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors | ||||
|    * @param[in]       ch_im_out   numRow of A | ||||
|    * @param[in]       numCol_A    numCol of A | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in]       bias        the bias | ||||
|    * @param[in,out]   pOut        pointer to output | ||||
|    * @return     The function returns the incremented output pointer | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * This function assumes that data in pInBuffer are reordered | ||||
|    */ | ||||
|  | ||||
| q7_t     *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA, | ||||
|                                                   const q15_t * pInBuffer, | ||||
|                                                   const uint16_t ch_im_out, | ||||
|                                                   const uint16_t numCol_A, | ||||
|                                                   const uint16_t bias_shift, | ||||
|                                                   const uint16_t out_shift,  | ||||
|                                                   const q7_t * bias,  | ||||
|                                                   q7_t * pOut) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* set up the second output pointers */ | ||||
|     q7_t     *pOut2 = pOut + ch_im_out; | ||||
|     int       i; | ||||
|  | ||||
|     /* this loop over rows in A */ | ||||
|     for (i = 0; i < ch_im_out; i += 2) | ||||
|     { | ||||
|         /* setup pointers for B */ | ||||
|         const q15_t *pB = pInBuffer; | ||||
|         const q15_t *pB2 = pB + numCol_A; | ||||
|  | ||||
|         /* align the second pointer for A */ | ||||
|         const q7_t *pA2 = pA + numCol_A; | ||||
|  | ||||
|         /* init the sum with bias */ | ||||
|         q31_t     sum =  ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum2 = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum3 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum4 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|         uint16_t  colCnt = numCol_A >> 2; | ||||
|         /* accumulate over the vector */ | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inA11, inA12, inA21, inA22; | ||||
|             q31_t     inB1 = *__SIMD32(pB)++; | ||||
|             q31_t     inB2 = *__SIMD32(pB2)++; | ||||
|  | ||||
|             pA = (q7_t *) read_and_pad_reordered((void *)pA, &inA11, &inA12); | ||||
|             pA2 = (q7_t *) read_and_pad_reordered((void *)pA2, &inA21, &inA22); | ||||
|  | ||||
|             sum = __SMLAD(inA11, inB1, sum); | ||||
|             sum2 = __SMLAD(inA11, inB2, sum2); | ||||
|             sum3 = __SMLAD(inA21, inB1, sum3); | ||||
|             sum4 = __SMLAD(inA21, inB2, sum4); | ||||
|  | ||||
|             inB1 = *__SIMD32(pB)++; | ||||
|             inB2 = *__SIMD32(pB2)++; | ||||
|  | ||||
|             sum = __SMLAD(inA12, inB1, sum); | ||||
|             sum2 = __SMLAD(inA12, inB2, sum2); | ||||
|             sum3 = __SMLAD(inA22, inB1, sum3); | ||||
|             sum4 = __SMLAD(inA22, inB2, sum4); | ||||
|  | ||||
|             colCnt--; | ||||
|         }                       /* while over colCnt */ | ||||
|         colCnt = numCol_A & 0x3; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q7_t      inA1 = *pA++; | ||||
|             q15_t     inB1 = *pB++; | ||||
|             q7_t      inA2 = *pA2++; | ||||
|             q15_t     inB2 = *pB2++; | ||||
|  | ||||
|             sum += inA1 * inB1; | ||||
|             sum2 += inA1 * inB2; | ||||
|             sum3 += inA2 * inB1; | ||||
|             sum4 += inA2 * inB2; | ||||
|             colCnt--; | ||||
|         }                       /* while over colCnt */ | ||||
|         *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|         *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); | ||||
|         *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8); | ||||
|         *pOut2++ = (q7_t) __SSAT((sum4 >> out_shift), 8); | ||||
|  | ||||
|         /* skip the row computed with A2 */ | ||||
|         pA += numCol_A; | ||||
|     }                           /* for over ch_im_out */ | ||||
|  | ||||
|     pOut += ch_im_out; | ||||
|  | ||||
|     /* return the new output pointer with offset */ | ||||
|     return pOut; | ||||
| #else | ||||
|     /* To be completed */ | ||||
|     return NULL; | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
| } | ||||
| @@ -0,0 +1,199 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_fully_connected_mat_q7_vec_q15.c | ||||
|  * Description:  Mixed Q15-Q7 fully-connected layer function | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup FC | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Mixed Q15-Q7 fully-connected layer function | ||||
|    * @param[in]       pV          pointer to input vector | ||||
|    * @param[in]       pM          pointer to matrix weights | ||||
|    * @param[in]       dim_vec     length of the vector | ||||
|    * @param[in]       num_of_rows number of rows in weight matrix | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in]       bias        pointer to bias | ||||
|    * @param[in,out]   pOut        pointer to output vector | ||||
|    * @param[in,out]   vec_buffer  pointer to buffer space for input | ||||
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code> | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * vec_buffer size: 0 | ||||
|    * | ||||
|    *  Q7_Q15 version of the fully connected layer | ||||
|    * | ||||
|    *  Weights are in q7_t and Activations are in q15_t | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_fully_connected_mat_q7_vec_q15(const q15_t * pV, | ||||
|                                    const q7_t * pM, | ||||
|                                    const uint16_t dim_vec, | ||||
|                                    const uint16_t num_of_rows, | ||||
|                                    const uint16_t bias_shift, | ||||
|                                    const uint16_t out_shift,  | ||||
|                                    const q7_t * bias,  | ||||
|                                    q15_t * pOut,  | ||||
|                                    q15_t * vec_buffer) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     const q7_t *pB = pM; | ||||
|     const q7_t *pB2; | ||||
|     q15_t    *pO = pOut; | ||||
|     const q7_t *pBias = bias; | ||||
|     const q15_t *pA = pV; | ||||
|  | ||||
|     uint16_t  rowCnt = num_of_rows >> 1; | ||||
|  | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         uint16_t  colCnt = dim_vec >> 2; | ||||
|  | ||||
|         pA = pV; | ||||
|         pB2 = pB + dim_vec; | ||||
|  | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inV, inM11, inM12, inM21, inM22; | ||||
|             pB = (q7_t *) read_and_pad((void *)pB, &inM11, &inM12); | ||||
|             pB2 = (q7_t *) read_and_pad((void *)pB2, &inM21, &inM22); | ||||
|  | ||||
|             inV = *__SIMD32(pA)++; | ||||
|  | ||||
|             sum = __SMLAD(inV, inM11, sum); | ||||
|             sum2 = __SMLAD(inV, inM21, sum2); | ||||
|  | ||||
|             inV = *__SIMD32(pA)++; | ||||
|  | ||||
|             sum = __SMLAD(inV, inM12, sum); | ||||
|             sum2 = __SMLAD(inV, inM22, sum2); | ||||
|  | ||||
|             colCnt--; | ||||
|         } | ||||
|         colCnt = dim_vec & 0x3; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q15_t     inV = *pA++; | ||||
|             q7_t      inM = *pB++; | ||||
|             q7_t      inM2 = *pB2++; | ||||
|  | ||||
|             sum += inV * inM; | ||||
|             sum2 += inV * inM2; | ||||
|             colCnt--; | ||||
|         }                       /* while over colCnt */ | ||||
|         *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); | ||||
|         *pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16)); | ||||
|  | ||||
|         /*adjust the pointers and counters */ | ||||
|         pB += dim_vec; | ||||
|         rowCnt--; | ||||
|     } | ||||
|  | ||||
|     /* left-over part of the rows */ | ||||
|     rowCnt = num_of_rows & 0x1; | ||||
|  | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         uint16_t  colCnt = dim_vec >> 2; | ||||
|  | ||||
|         pA = pV; | ||||
|  | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inV1, inV2, inM11, inM12; | ||||
|  | ||||
|             pB = (q7_t *) read_and_pad((void *)pB, &inM11, &inM12); | ||||
|  | ||||
|             inV1 = *__SIMD32(pA)++; | ||||
|             sum = __SMLAD(inV1, inM11, sum); | ||||
|  | ||||
|             inV2 = *__SIMD32(pA)++; | ||||
|             sum = __SMLAD(inV2, inM12, sum); | ||||
|  | ||||
|             colCnt--; | ||||
|         } | ||||
|  | ||||
|         /* left-over of the vector */ | ||||
|         colCnt = dim_vec & 0x3; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q15_t     inV = *pA++; | ||||
|             q7_t      inM = *pB++; | ||||
|             sum += inV * inM; | ||||
|             colCnt--; | ||||
|         } | ||||
|  | ||||
|         *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); | ||||
|  | ||||
|         rowCnt--; | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     int       i, j; | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     for (i = 0; i < num_of_rows; i++) | ||||
|     { | ||||
|         int       ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); | ||||
|         for (j = 0; j < dim_vec; j++) | ||||
|         { | ||||
|             ip_out += pV[j] * pM[i * dim_vec + j]; | ||||
|         } | ||||
|         pOut[i] = (q15_t) __SSAT((ip_out >> out_shift), 16); | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to ARM_MATH_SUCCESS */ | ||||
|     return (ARM_MATH_SUCCESS); | ||||
|  | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of FC group | ||||
|  */ | ||||
| @@ -0,0 +1,403 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_fully_connected_mat_q7_vec_q15_opt.c | ||||
|  * Description:  Mixed Q15-Q7 opt fully-connected layer function | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup FC | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Mixed Q15-Q7 opt fully-connected layer function | ||||
|    * @param[in]       pV          pointer to input vector | ||||
|    * @param[in]       pM          pointer to matrix weights | ||||
|    * @param[in]       dim_vec     length of the vector | ||||
|    * @param[in]       num_of_rows number of rows in weight matrix | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in]       bias        pointer to bias | ||||
|    * @param[in,out]   pOut        pointer to output vector | ||||
|    * @param[in,out]   vec_buffer  pointer to buffer space for input | ||||
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code> | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * vec_buffer size: 0 | ||||
|    * | ||||
|    *  Q7_Q15 version of the fully connected layer | ||||
|    * | ||||
|    *  Weights are in q7_t and Activations are in q15_t | ||||
|    * | ||||
|    *  Limitation: x4 version requires weight reordering to work | ||||
|    * | ||||
|    *  Here we use only one pointer to read 4 rows in the weight | ||||
|    *  matrix. So if the original q7_t matrix looks like this: | ||||
|    * | ||||
|    *  | a11 | a12 | a13 | a14 | a15 | a16 | a17 | | ||||
|    * | ||||
|    *  | a21 | a22 | a23 | a24 | a25 | a26 | a27 | | ||||
|    * | ||||
|    *  | a31 | a32 | a33 | a34 | a35 | a36 | a37 | | ||||
|    * | ||||
|    *  | a41 | a42 | a43 | a44 | a45 | a46 | a47 | | ||||
|    * | ||||
|    *  | a51 | a52 | a53 | a54 | a55 | a56 | a57 | | ||||
|    * | ||||
|    *  | a61 | a62 | a63 | a64 | a65 | a66 | a67 | | ||||
|    * | ||||
|    *  We operates on multiple-of-4 rows, so the first four rows becomes | ||||
|    * | ||||
|    *  | a11 | a21 | a12 | a22 | a31 | a41 | a32 | a42 | | ||||
|    * | ||||
|    *  | a13 | a23 | a14 | a24 | a33 | a43 | a34 | a44 | | ||||
|    * | ||||
|    *  | a15 | a25 | a16 | a26 | a35 | a45 | a36 | a46 | | ||||
|    * | ||||
|    *  The column left over will be in-order. | ||||
|    *  which is: | ||||
|    *  | a17 | a27 | a37 | a47 | | ||||
|    * | ||||
|    *  For the left-over rows, we do 1x1 computation, so the data remains | ||||
|    *  as its original order.  | ||||
|    * | ||||
|    *  So the stored weight matrix looks like this: | ||||
|    * | ||||
|    *  | a11 | a21 | a12 | a22 | a31 | a41 | | ||||
|    * | ||||
|    *  | a32 | a42 | a13 | a23 | a14 | a24 | | ||||
|    * | ||||
|    *  | a33 | a43 | a34 | a44 | a15 | a25 | | ||||
|    * | ||||
|    *  | a16 | a26 | a35 | a45 | a36 | a46 | | ||||
|    * | ||||
|    *  | a17 | a27 | a37 | a47 | a51 | a52 | | ||||
|    * | ||||
|    *  | a53 | a54 | a55 | a56 | a57 | a61 | | ||||
|    * | ||||
|    *  | a62 | a63 | a64 | a65 | a66 | a67 | | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV, | ||||
|                                        const q7_t * pM, | ||||
|                                        const uint16_t dim_vec, | ||||
|                                        const uint16_t num_of_rows, | ||||
|                                        const uint16_t bias_shift, | ||||
|                                        const uint16_t out_shift, const q7_t * bias, q15_t * pOut, q15_t * vec_buffer) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     const q7_t *pB = pM; | ||||
|     q15_t    *pO = pOut; | ||||
|     const q7_t *pBias = bias; | ||||
|     const q15_t *pA = pV; | ||||
|  | ||||
|     uint16_t  rowCnt = num_of_rows >> 2; | ||||
|  | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|         uint16_t  colCnt = dim_vec >> 1; | ||||
|  | ||||
|         pA = pV; | ||||
|  | ||||
| #ifdef USE_INTRINSIC | ||||
|  | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|  | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inM11, inM12, inM13, inM14; | ||||
|             q31_t     inV; | ||||
|  | ||||
|             inV = *__SIMD32(pA)++; | ||||
|             inM11 = *__SIMD32(pB)++; | ||||
|             inM12 = __SXTB16(__ROR(inM11, 8)); | ||||
|             inM11 = __SXTB16(inM11); | ||||
|             sum = __SMLAD(inM11, inV, sum); | ||||
|             sum2 = __SMLAD(inM12, inV, sum2); | ||||
|             inM13 = *__SIMD32(pB)++; | ||||
|             inM14 = __SXTB16(__ROR(inM13, 8)); | ||||
|             inM13 = __SXTB16(inM13); | ||||
|             sum3 = __SMLAD(inM13, inV, sum3); | ||||
|             sum4 = __SMLAD(inM14, inV, sum4); | ||||
|             colCnt--; | ||||
|         } | ||||
|  | ||||
| #else | ||||
|  | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inM11, inM12, inM13, inM14; | ||||
|             q31_t     inV; | ||||
|  | ||||
|             inV = *__SIMD32(pA)++; | ||||
|             inM11 = *__SIMD32(pB)++; | ||||
|             inM12 = __SXTB16(__ROR(inM11, 8)); | ||||
|             inM11 = __SXTB16(inM11); | ||||
|             sum = __SMLAD(inM12, inV, sum); | ||||
|             sum2 = __SMLAD(inM11, inV, sum2); | ||||
|             inM13 = *__SIMD32(pB)++; | ||||
|             inM14 = __SXTB16(__ROR(inM13, 8)); | ||||
|             inM13 = __SXTB16(inM13); | ||||
|             sum3 = __SMLAD(inM14, inV, sum3); | ||||
|             sum4 = __SMLAD(inM13, inV, sum4); | ||||
|             colCnt--; | ||||
|         } | ||||
|  | ||||
| #endif                          /* ARM_MATH_BIG_ENDIAN */ | ||||
|  | ||||
| #else | ||||
|  | ||||
|         /* | ||||
|          * register needed: | ||||
|          * loop counter: colCnt | ||||
|          * accumulators: sum, sum2, sum3, sum4 | ||||
|          * pointers: pB, pA | ||||
|          * weight data: inM11, inM12, inM13, inM14 | ||||
|          * activation data: inV | ||||
|          */ | ||||
|  | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|         asm volatile ("COL_LOOP_%=:\n" | ||||
|                       "ldr.w r4, [%[pA]], #4\n" | ||||
|                       "ldr.w r1, [%[pB]], #8\n" | ||||
|                       "mov.w r0, r1, ror #8\n" | ||||
|                       "sxtb16 r0, r0\n" | ||||
|                       "sxtb16 r1, r1\n" | ||||
|                       "smlad %[sum], r4, r1, %[sum]\n" | ||||
|                       "smlad %[sum2], r4, r0, %[sum2]\n" | ||||
|                       "ldr.w r3, [%[pB], #-4]\n" | ||||
|                       "mov.w r2, r3, ror #8\n" | ||||
|                       "sxtb16 r2, r2\n" | ||||
|                       "sxtb16 r3, r3\n" | ||||
|                       "smlad %[sum3], r4, r3, %[sum3]\n" | ||||
|                       "smlad %[sum4], r4, r2, %[sum4]\n" | ||||
|                       "subs %[colCnt], #1\n" | ||||
|                       "bne COL_LOOP_%=\n":[sum] "+r"(sum), | ||||
|                       [sum2] "+r"(sum2),[sum3] "+r"(sum3), | ||||
|                       [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4"); | ||||
| #else | ||||
|         asm volatile ("COL_LOOP_%=:\n" | ||||
|                       "ldr.w r4, [%[pA]], #4\n" | ||||
|                       "ldr.w r1, [%[pB]], #8\n" | ||||
|                       "mov.w r0, r1, ror #8\n" | ||||
|                       "sxtb16 r0, r0\n" | ||||
|                       "sxtb16 r1, r1\n" | ||||
|                       "smlad %[sum], r4, r0, %[sum]\n" | ||||
|                       "smlad %[sum2], r4, r1, %[sum2]\n" | ||||
|                       "ldr.w r3, [%[pB], #-4]\n" | ||||
|                       "mov.w r2, r3, ror #8\n" | ||||
|                       "sxtb16 r2, r2\n" | ||||
|                       "sxtb16 r3, r3\n" | ||||
|                       "smlad %[sum3], r4, r2, %[sum3]\n" | ||||
|                       "smlad %[sum4], r4, r3, %[sum4]\n" | ||||
|                       "subs %[colCnt], #1\n" | ||||
|                       "bne COL_LOOP_%=\n":[sum] "+r"(sum), | ||||
|                       [sum2] "+r"(sum2),[sum3] "+r"(sum3), | ||||
|                       [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4"); | ||||
| #endif                          /* ARM_MATH_BIG_ENDIAN */ | ||||
|  | ||||
| #endif                          /* USE_INTRINSIC */ | ||||
|  | ||||
|         colCnt = dim_vec & 0x1; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q15_t     inV = *pA++; | ||||
|             q7_t      inM = *pB++; | ||||
|             q7_t      inM2 = *pB++; | ||||
|             q7_t      inM3 = *pB++; | ||||
|             q7_t      inM4 = *pB++; | ||||
|  | ||||
|             sum += inV * inM; | ||||
|             sum2 += inV * inM2; | ||||
|             sum3 += inV * inM3; | ||||
|             sum4 += inV * inM4; | ||||
|             colCnt--; | ||||
|         }                       /* while over colCnt */ | ||||
|         *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); | ||||
|         *pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16)); | ||||
|         *pO++ = (q15_t) (__SSAT((sum3 >> out_shift), 16)); | ||||
|         *pO++ = (q15_t) (__SSAT((sum4 >> out_shift), 16)); | ||||
|  | ||||
|         /* adjust the pointers and counters */ | ||||
|         rowCnt--; | ||||
|     } | ||||
|  | ||||
|     /* left-over part of the rows */ | ||||
|     rowCnt = num_of_rows & 0x3; | ||||
|  | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|         uint16_t  colCnt = dim_vec >> 2; | ||||
|  | ||||
|         pA = pV; | ||||
|  | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inV1, inV2, inM11, inM12; | ||||
|  | ||||
|             pB = (q7_t *) read_and_pad((void *)pB, &inM11, &inM12); | ||||
|  | ||||
|             inV1 = *__SIMD32(pA)++; | ||||
|             sum = __SMLAD(inV1, inM11, sum); | ||||
|  | ||||
|             inV2 = *__SIMD32(pA)++; | ||||
|             sum = __SMLAD(inV2, inM12, sum); | ||||
|  | ||||
|             colCnt--; | ||||
|         } | ||||
|  | ||||
|         /* left-over of the vector */ | ||||
|         colCnt = dim_vec & 0x3; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q15_t     inV = *pA++; | ||||
|             q7_t      inM = *pB++; | ||||
|             sum += inV * inM; | ||||
|             colCnt--; | ||||
|         } | ||||
|  | ||||
|         *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); | ||||
|  | ||||
|         rowCnt--; | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     uint16_t  rowCnt = num_of_rows >> 2; | ||||
|     const q7_t *pB = pM; | ||||
|     const q15_t *pA; | ||||
|     q15_t    *pO = pOut; | ||||
|     const q7_t *pBias = bias; | ||||
|  | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);  | ||||
|         q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);  | ||||
|         uint16_t  colCnt = dim_vec >> 1; | ||||
|  | ||||
|         pA = pV; | ||||
|  | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q15_t     inA1 = *pA++; | ||||
|             q15_t     inA2 = *pA++; | ||||
|  | ||||
|             q7_t      inB1 = *pB++; | ||||
|             q7_t      inB3 = *pB++; | ||||
|             q7_t      inB2 = *pB++; | ||||
|             q7_t      inB4 = *pB++; | ||||
|  | ||||
|             sum += inA1 * inB1 + inA2 * inB2; | ||||
|             sum2 += inA1 * inB3 + inA2 * inB4; | ||||
|  | ||||
|             inB1 = *pB++; | ||||
|             inB3 = *pB++; | ||||
|             inB2 = *pB++; | ||||
|             inB4 = *pB++; | ||||
|  | ||||
|             sum3 += inA1 * inB1 + inA2 * inB2; | ||||
|             sum4 += inA1 * inB3 + inA2 * inB4; | ||||
|  | ||||
|             colCnt--; | ||||
|         } | ||||
|  | ||||
|         colCnt = dim_vec & 0x1; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q15_t     inA = *pA++; | ||||
|             q7_t      inB = *pB++; | ||||
|             sum += inA * inB; | ||||
|             inB = *pB++; | ||||
|             sum2 += inA * inB; | ||||
|             inB = *pB++; | ||||
|             sum3 += inA * inB; | ||||
|             inB = *pB++; | ||||
|             sum4 += inA * inB; | ||||
|  | ||||
|             colCnt--; | ||||
|         } | ||||
|         *pO++ = (q15_t) __SSAT((sum >> out_shift), 16); | ||||
|         *pO++ = (q15_t) __SSAT((sum2 >> out_shift), 16); | ||||
|         *pO++ = (q15_t) __SSAT((sum3 >> out_shift), 16); | ||||
|         *pO++ = (q15_t) __SSAT((sum4 >> out_shift), 16); | ||||
|  | ||||
|         rowCnt--; | ||||
|     } | ||||
|  | ||||
|     rowCnt = num_of_rows & 0x3; | ||||
|  | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         int       ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         int       j; | ||||
|  | ||||
|         pA = pV; | ||||
|         for (j = 0; j < dim_vec; j++) | ||||
|         { | ||||
|             q15_t     inA = *pA++; | ||||
|             q7_t      inB = *pB++; | ||||
|             ip_out += inA * inB; | ||||
|         } | ||||
|         *pO++ = (q15_t) __SSAT((ip_out >> out_shift), 16); | ||||
|  | ||||
|         rowCnt--; | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to ARM_MATH_SUCCESS */ | ||||
|     return (ARM_MATH_SUCCESS); | ||||
|  | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of FC group | ||||
|  */ | ||||
| @@ -0,0 +1,193 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_fully_connected_q15.c | ||||
|  * Description:  Q15 basic fully-connected layer function | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup FC | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Q15 opt fully-connected layer function | ||||
|    * @param[in]       pV          pointer to input vector | ||||
|    * @param[in]       pM          pointer to matrix weights | ||||
|    * @param[in]       dim_vec     length of the vector | ||||
|    * @param[in]       num_of_rows number of rows in weight matrix | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in]       bias        pointer to bias | ||||
|    * @param[in,out]   pOut        pointer to output vector | ||||
|    * @param[in,out]   vec_buffer  pointer to buffer space for input | ||||
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code> | ||||
|    * | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * vec_buffer size: 0 | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_fully_connected_q15(const q15_t * pV, | ||||
|                         const q15_t * pM, | ||||
|                         const uint16_t dim_vec, | ||||
|                         const uint16_t num_of_rows, | ||||
|                         const uint16_t bias_shift, | ||||
|                         const uint16_t out_shift,  | ||||
|                         const q15_t * bias,  | ||||
|                         q15_t * pOut, | ||||
|                         q15_t * vec_buffer) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     const q15_t *pB = pM; | ||||
|     const q15_t *pB2 = pB + dim_vec; | ||||
|     q15_t    *pO = pOut; | ||||
|     const q15_t    *pA; | ||||
|     const q15_t    *pBias = bias; | ||||
|     uint16_t rowCnt = num_of_rows >> 1; | ||||
|  | ||||
|     /* this loop loops over different output */ | ||||
|     while (rowCnt) { | ||||
|         q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|         uint16_t  colCnt = dim_vec >> 2; | ||||
|  | ||||
|         pA = pV; | ||||
|         pB2 = pB + dim_vec; | ||||
|  | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inV1, inM1, inM2; | ||||
|             inV1 = *__SIMD32(pA)++; | ||||
|             inM1 = *__SIMD32(pB)++; | ||||
|             sum = __SMLAD(inV1, inM1, sum); | ||||
|             inM2 = *__SIMD32(pB2)++; | ||||
|             sum2 = __SMLAD(inV1, inM2, sum2); | ||||
|  | ||||
|             inV1 = *__SIMD32(pA)++; | ||||
|             inM1 = *__SIMD32(pB)++; | ||||
|             sum = __SMLAD(inV1, inM1, sum); | ||||
|             inM2 = *__SIMD32(pB2)++; | ||||
|             sum2 = __SMLAD(inV1, inM2, sum2); | ||||
|  | ||||
|             colCnt--; | ||||
|         } | ||||
|         colCnt = dim_vec & 0x3; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q15_t     inV = *pA++; | ||||
|             q15_t     inM = *pB++; | ||||
|             q15_t     inM2 = *pB2++; | ||||
|  | ||||
|             sum += inV * inM; | ||||
|             sum2 += inV * inM2; | ||||
|             colCnt--; | ||||
|         }                       /* while over colCnt */ | ||||
|         *pO++ =  (q15_t) (__SSAT((sum >> out_shift), 16)); | ||||
|         *pO++ = (q15_t) (__SSAT((sum2>> out_shift), 16)); | ||||
| 		 | ||||
|         /* adjust the pointers and counters */ | ||||
|         pB = pB + dim_vec; | ||||
|         rowCnt --; | ||||
|     } | ||||
|  | ||||
|     rowCnt = num_of_rows & 0x1; | ||||
|  | ||||
|     while (rowCnt) { | ||||
|         q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|         uint16_t  colCnt = dim_vec >> 2; | ||||
|  | ||||
|         pA = pV; | ||||
|        | ||||
|         while (colCnt) { | ||||
|             q31_t     inV1, inM1; | ||||
|             inV1 = *__SIMD32(pA)++; | ||||
|             inM1 = *__SIMD32(pB)++; | ||||
|             sum = __SMLAD(inV1, inM1, sum); | ||||
|              | ||||
|             inV1 = *__SIMD32(pA)++; | ||||
|             inM1 = *__SIMD32(pB)++; | ||||
|             sum = __SMLAD(inV1, inM1, sum); | ||||
| 				 | ||||
|             colCnt--; | ||||
| 	} | ||||
| 			 | ||||
| 	/* left-over of the vector */ | ||||
| 	colCnt = dim_vec & 0x3; | ||||
| 	while(colCnt) { | ||||
|             q15_t     inV = *pA++; | ||||
|             q15_t     inM = *pB++; | ||||
|  | ||||
|             sum += inV * inM; | ||||
|  | ||||
|             colCnt--; | ||||
| 	} | ||||
|  | ||||
|         *pO++ =  (q15_t) (__SSAT((sum >> out_shift), 16)); | ||||
| 			 | ||||
|         rowCnt --; | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     int       i, j; | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     for (i = 0; i < num_of_rows; i++) | ||||
|     { | ||||
|         int       ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); | ||||
|         for (j = 0; j < dim_vec; j++) | ||||
|         { | ||||
|             ip_out += pV[j] * pM[i * dim_vec + j]; | ||||
|         } | ||||
|         pOut[i] = (q15_t) __SSAT((ip_out >> out_shift), 16); | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to application */ | ||||
|     return (ARM_MATH_SUCCESS); | ||||
|  | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of FC group | ||||
|  */ | ||||
| @@ -0,0 +1,332 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_fully_connected_q15_opt.c | ||||
|  * Description:  Q15 opt fully-connected layer function | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup FC | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Q15 opt fully-connected layer function | ||||
|    * @param[in]       pV          pointer to input vector | ||||
|    * @param[in]       pM          pointer to matrix weights | ||||
|    * @param[in]       dim_vec     length of the vector | ||||
|    * @param[in]       num_of_rows number of rows in weight matrix | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in]       bias        pointer to bias | ||||
|    * @param[in,out]   pOut        pointer to output vector | ||||
|    * @param[in,out]   vec_buffer  pointer to buffer space for input | ||||
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code> | ||||
|    * | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * vec_buffer size: 0 | ||||
|    * | ||||
|    *  Here we use only one pointer to read 4 rows in the weight | ||||
|    *  matrix. So if the original matrix looks like this: | ||||
|    * | ||||
|    *  | a11 | a12 | a13 | | ||||
|    * | ||||
|    *  | a21 | a22 | a23 | | ||||
|    * | ||||
|    *  | a31 | a32 | a33 | | ||||
|    * | ||||
|    *  | a41 | a42 | a43 | | ||||
|    * | ||||
|    *  | a51 | a52 | a53 | | ||||
|    * | ||||
|    *  | a61 | a62 | a63 | | ||||
|    * | ||||
|    *  We operates on multiple-of-4 rows, so the first four rows becomes | ||||
|    * | ||||
|    *  | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 | | ||||
|    * | ||||
|    *  | a13 | a23 | a33 | a43 | | ||||
|    * | ||||
|    *  Remaining rows are kept the same original order. | ||||
|    * | ||||
|    *  So the stored weight matrix looks like this: | ||||
|    * | ||||
|    * | ||||
|    *  | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 | | ||||
|    * | ||||
|    *  | a13 | a23 | a33 | a43 | a51 | a52 | a53 | a61 | | ||||
|    * | ||||
|    *  | a62 | a63 | | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_fully_connected_q15_opt(const q15_t * pV, | ||||
|                             const q15_t * pM, | ||||
|                             const uint16_t dim_vec, | ||||
|                             const uint16_t num_of_rows, | ||||
|                             const uint16_t bias_shift, | ||||
|                             const uint16_t out_shift,  | ||||
|                             const q15_t * bias,  | ||||
|                             q15_t * pOut,  | ||||
|                             q15_t * vec_buffer) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     const q15_t *pB = pM; | ||||
|     q15_t    *pO = pOut; | ||||
|     const q15_t *pBias = bias; | ||||
|     const q15_t *pA = pV; | ||||
|  | ||||
|     uint16_t  rowCnt = num_of_rows >> 2; | ||||
|  | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);  | ||||
|         q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);  | ||||
|         q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);  | ||||
|  | ||||
|         uint16_t  colCnt = dim_vec >> 1; | ||||
|  | ||||
|         pA = pV; | ||||
|  | ||||
| #ifdef USE_INTRINSIC | ||||
|  | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inM11, inM12, inM13, inM14; | ||||
|             q31_t     inV; | ||||
|  | ||||
|             inV = *__SIMD32(pA)++; | ||||
|             inM11 = *__SIMD32(pB)++; | ||||
|             sum = __SMLAD(inV, inM11, sum); | ||||
|             inM12 = *__SIMD32(pB)++; | ||||
|             sum2 = __SMLAD(inV, inM12, sum2); | ||||
|             inM13 = *__SIMD32(pB)++; | ||||
|             sum3 = __SMLAD(inV, inM13, sum3); | ||||
|             inM14 = *__SIMD32(pB)++; | ||||
|             sum4 = __SMLAD(inV, inM14, sum4); | ||||
|             colCnt--; | ||||
|         } | ||||
|  | ||||
| #else | ||||
|  | ||||
|         /* | ||||
|          * register needed: | ||||
|          * loop counter: colCnt | ||||
|          * accumulators: sum, sum2, sum3, sum4 | ||||
|          * pointers: pB, pA | ||||
|          * weight data: inM11, inM12, inM13, inM14 | ||||
|          * activation data: inV | ||||
|          */ | ||||
|  | ||||
|         asm volatile ("COL_LOOP_%=:\n" | ||||
|                       "ldr.w r4, [%[pA]], #4\n" | ||||
|                       "ldr.w r0, [%[pB]], #16\n" | ||||
|                       "smlad %[sum], r4, r0, %[sum]\n" | ||||
|                       "ldr.w r1, [%[pB] , #-12]\n" | ||||
|                       "smlad %[sum2], r4, r1, %[sum2]\n" | ||||
|                       "ldr.w r2, [%[pB] , #-8]\n" | ||||
|                       "smlad %[sum3], r4, r2, %[sum3]\n" | ||||
|                       "ldr.w r3, [%[pB] , #-4]\n" | ||||
|                       "smlad %[sum4], r4, r3, %[sum4]\n" | ||||
|                       "subs %[colCnt], #1\n" | ||||
|                       "bne COL_LOOP_%=\n":[sum] "+r"(sum), | ||||
|                       [sum2] "+r"(sum2),[sum3] "+r"(sum3), | ||||
|                       [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4"); | ||||
|  | ||||
| #endif                          /* USE_INTRINSIC */ | ||||
|  | ||||
|         colCnt = dim_vec & 0x1; | ||||
|         while (colCnt) | ||||
|         { | ||||
|  | ||||
|             q15_t     inV = *pA++; | ||||
|             q15_t     inM = *pB++; | ||||
|             q15_t     inM2 = *pB++; | ||||
|             q15_t     inM3 = *pB++; | ||||
|             q15_t     inM4 = *pB++; | ||||
|  | ||||
|             sum += inV * inM; | ||||
|             sum2 += inV * inM2; | ||||
|             sum3 += inV * inM3; | ||||
|             sum4 += inV * inM4; | ||||
|             colCnt--; | ||||
|         }                       /* while over colCnt */ | ||||
|         *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); | ||||
|         *pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16)); | ||||
|         *pO++ = (q15_t) (__SSAT((sum3 >> out_shift), 16)); | ||||
|         *pO++ = (q15_t) (__SSAT((sum4 >> out_shift), 16)); | ||||
|  | ||||
|         /* adjust the pointers and counters */ | ||||
|         rowCnt--; | ||||
|     } | ||||
|  | ||||
|     /* left-over part of the rows */ | ||||
|     rowCnt = num_of_rows & 0x3; | ||||
|  | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|         uint16_t  colCnt = dim_vec >> 2; | ||||
|  | ||||
|         pA = pV; | ||||
|  | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inV1, inV2, inM1, inM2; | ||||
|  | ||||
|             inM1 = *__SIMD32(pB)++; | ||||
|             inV1 = *__SIMD32(pA)++; | ||||
|             sum = __SMLAD(inV1, inM1, sum); | ||||
|  | ||||
|             inM2 = *__SIMD32(pB)++; | ||||
|             inV2 = *__SIMD32(pA)++; | ||||
|             sum = __SMLAD(inV2, inM2, sum); | ||||
|  | ||||
|             colCnt--; | ||||
|         } | ||||
|  | ||||
|         /* left-over of the vector */ | ||||
|         colCnt = dim_vec & 0x3; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q15_t     inV = *pA++; | ||||
|             q15_t     inM = *pB++; | ||||
|             sum += inV * inM; | ||||
|             colCnt--; | ||||
|         } | ||||
|  | ||||
|         *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); | ||||
|  | ||||
|         rowCnt--; | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     uint16_t  rowCnt = num_of_rows >> 2; | ||||
|     const q15_t *pB = pM; | ||||
|     const q15_t *pA; | ||||
|     q15_t    *pO = pOut; | ||||
|     const q15_t *pBias = bias; | ||||
|  | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|         uint16_t  colCnt = dim_vec >> 1; | ||||
|  | ||||
|         pA = pV; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q15_t     inA1 = *pA++; | ||||
|             q15_t     inA2 = *pA++; | ||||
|  | ||||
|             q15_t     inB1 = *pB++; | ||||
|             q15_t     inB2 = *pB++; | ||||
|             sum += inA1 * inB1 + inA2 * inB2; | ||||
|  | ||||
|             inB1 = *pB++; | ||||
|             inB2 = *pB++; | ||||
|             sum2 += inA1 * inB1 + inA2 * inB2; | ||||
|  | ||||
|             inB1 = *pB++; | ||||
|             inB2 = *pB++; | ||||
|             sum3 += inA1 * inB1 + inA2 * inB2; | ||||
|  | ||||
|             inB1 = *pB++; | ||||
|             inB2 = *pB++; | ||||
|             sum4 += inA1 * inB1 + inA2 * inB2; | ||||
|  | ||||
|             colCnt--; | ||||
|         } | ||||
|         colCnt = dim_vec & 0x1; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q15_t     inA = *pA++; | ||||
|             q15_t     inB = *pB++; | ||||
|             sum += inA * inB; | ||||
|             inB = *pB++; | ||||
|             sum2 += inA * inB; | ||||
|             inB = *pB++; | ||||
|             sum3 += inA * inB; | ||||
|             inB = *pB++; | ||||
|             sum4 += inA * inB; | ||||
|             colCnt--; | ||||
|         } | ||||
|         *pO++ = (q15_t) __SSAT((sum >> out_shift), 16); | ||||
|         *pO++ = (q15_t) __SSAT((sum2 >> out_shift), 16); | ||||
|         *pO++ = (q15_t) __SSAT((sum3 >> out_shift), 16); | ||||
|         *pO++ = (q15_t) __SSAT((sum4 >> out_shift), 16); | ||||
|  | ||||
|         rowCnt--; | ||||
|     } | ||||
|     rowCnt = num_of_rows & 0x3; | ||||
|  | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         int       ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         int       j; | ||||
|  | ||||
|         pA = pV; | ||||
|         for (j = 0; j < dim_vec; j++) | ||||
|         { | ||||
|             q15_t     inA = *pA++; | ||||
|             q15_t     inB = *pB++; | ||||
|             ip_out += inA * inB; | ||||
|         } | ||||
|         *pO++ = (q15_t) __SSAT((ip_out >> out_shift), 16); | ||||
|  | ||||
|         rowCnt--; | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to ARM_MATH_SUCCESS */ | ||||
|     return (ARM_MATH_SUCCESS); | ||||
|  | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of FC group | ||||
|  */ | ||||
| @@ -0,0 +1,198 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_fully_connected_q7.c | ||||
|  * Description:  Q7 basic fully-connected layer function | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup FC | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Q7 basic fully-connected layer function | ||||
|    * @param[in]       pV          pointer to input vector | ||||
|    * @param[in]       pM          pointer to matrix weights | ||||
|    * @param[in]       dim_vec     length of the vector | ||||
|    * @param[in]       num_of_rows number of rows in weight matrix | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in]       bias        pointer to bias | ||||
|    * @param[in,out]   pOut        pointer to output vector | ||||
|    * @param[in,out]   vec_buffer  pointer to buffer space for input | ||||
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code> | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * vec_buffer size: dim_vec | ||||
|    * | ||||
|    * This basic function is designed to work with regular weight | ||||
|    * matrix without interleaving. | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_fully_connected_q7(const q7_t * pV, | ||||
|                        const q7_t * pM, | ||||
|                        const uint16_t dim_vec, | ||||
|                        const uint16_t num_of_rows, | ||||
|                        const uint16_t bias_shift, | ||||
|                        const uint16_t out_shift, const q7_t * bias, q7_t * pOut, q15_t * vec_buffer) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     const q7_t *pB = pM; | ||||
|     const q7_t *pB2; | ||||
|     q7_t     *pO = pOut; | ||||
|     const q7_t *pBias = bias; | ||||
|     q15_t    *pA; | ||||
|     uint16_t  rowCnt = num_of_rows >> 1; | ||||
|  | ||||
|     /* expand the vector into the buffer */ | ||||
|     arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec); | ||||
|  | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         uint16_t  colCnt = dim_vec >> 2; | ||||
|  | ||||
|         pA = vec_buffer; | ||||
|         pB2 = pB + dim_vec; | ||||
|  | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inV, inM11, inM12, inM21, inM22; | ||||
|             pB = (q7_t *) read_and_pad_reordered((void *)pB, &inM11, &inM12); | ||||
|             pB2 = (q7_t *) read_and_pad_reordered((void *)pB2, &inM21, &inM22); | ||||
|  | ||||
|             inV = *__SIMD32(pA)++; | ||||
|  | ||||
|             sum = __SMLAD(inV, inM11, sum); | ||||
|             sum2 = __SMLAD(inV, inM21, sum2); | ||||
|  | ||||
|             inV = *__SIMD32(pA)++; | ||||
|  | ||||
|             sum = __SMLAD(inV, inM12, sum); | ||||
|             sum2 = __SMLAD(inV, inM22, sum2); | ||||
|  | ||||
|             colCnt--; | ||||
|         } | ||||
|         colCnt = dim_vec & 0x3; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q7_t      inV = *pA++; | ||||
|             q15_t     inM = *pB++; | ||||
|             q15_t     inM2 = *pB2++; | ||||
|  | ||||
|             sum += inV * inM; | ||||
|             sum2 += inV * inM2; | ||||
|             colCnt--; | ||||
|         }                       /* while over colCnt */ | ||||
|         *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8)); | ||||
|         *pO++ = (q7_t) (__SSAT((sum2 >> out_shift), 8)); | ||||
|  | ||||
|         /* adjust the pointers and counters */ | ||||
|         pB += dim_vec; | ||||
|         rowCnt--; | ||||
|     } | ||||
|  | ||||
|     /* left-over part of the rows */ | ||||
|     rowCnt = num_of_rows & 0x1; | ||||
|  | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         uint16_t  colCnt = dim_vec >> 2; | ||||
|         q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|         pA = vec_buffer; | ||||
|  | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inV1, inV2, inM11, inM12; | ||||
|  | ||||
|             pB = (q7_t *) read_and_pad_reordered((void *)pB, &inM11, &inM12); | ||||
|  | ||||
|             inV1 = *__SIMD32(pA)++; | ||||
|             sum = __SMLAD(inV1, inM11, sum); | ||||
|  | ||||
|             inV2 = *__SIMD32(pA)++; | ||||
|             sum = __SMLAD(inV2, inM12, sum); | ||||
|  | ||||
|             colCnt--; | ||||
|         } | ||||
|  | ||||
|         /* left-over of the vector */ | ||||
|         colCnt = dim_vec & 0x3; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q7_t      inV = *pA++; | ||||
|             q15_t     inM = *pB++; | ||||
|             sum += inV * inM; | ||||
|             colCnt--; | ||||
|         } | ||||
|  | ||||
|         *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8)); | ||||
|  | ||||
|         rowCnt--; | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     int       i, j; | ||||
|  | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     for (i = 0; i < num_of_rows; i++) | ||||
|     { | ||||
|         int       ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); | ||||
|         for (j = 0; j < dim_vec; j++) | ||||
|         { | ||||
|             ip_out += pV[j] * pM[i * dim_vec + j]; | ||||
|         } | ||||
|         pOut[i] = (q7_t) __SSAT((ip_out >> out_shift), 8); | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to ARM_MATH_SUCCESS */ | ||||
|     return (ARM_MATH_SUCCESS); | ||||
|  | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of FC group | ||||
|  */ | ||||
| @@ -0,0 +1,484 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_fully_connected_q7_opt.c | ||||
|  * Description:  Q7 basic fully-connected layer function | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup FC | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Q7 opt fully-connected layer function | ||||
|    * @param[in]       pV          pointer to input vector | ||||
|    * @param[in]       pM          pointer to matrix weights | ||||
|    * @param[in]       dim_vec     length of the vector | ||||
|    * @param[in]       num_of_rows number of rows in weight matrix | ||||
|    * @param[in]       bias_shift  amount of left-shift for bias | ||||
|    * @param[in]       out_shift   amount of right-shift for output | ||||
|    * @param[in]       bias        pointer to bias | ||||
|    * @param[in,out]   pOut        pointer to output vector | ||||
|    * @param[in,out]   vec_buffer  pointer to buffer space for input | ||||
|    * @return     The function returns <code>ARM_MATH_SUCCESS</code> | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * vec_buffer size: dim_vec | ||||
|    * | ||||
|    * This opt function is designed to work with interleaved weight | ||||
|    * matrix. The vector input is assumed in q7_t format, we call | ||||
|    *  arm_q7_to_q15_no_shift_shuffle function to expand into | ||||
|    *  q15_t format with certain weight re-ordering, refer to the function | ||||
|    *  comments for more details. | ||||
|    *  Here we use only one pointer to read 4 rows in the weight | ||||
|    *  matrix. So if the original q7_t matrix looks like this: | ||||
|    * | ||||
|    *  | a11 | a12 | a13 | a14 | a15 | a16 | a17 | | ||||
|    * | ||||
|    *  | a21 | a22 | a23 | a24 | a25 | a26 | a27 | | ||||
|    * | ||||
|    *  | a31 | a32 | a33 | a34 | a35 | a36 | a37 | | ||||
|    * | ||||
|    *  | a41 | a42 | a43 | a44 | a45 | a46 | a47 | | ||||
|    * | ||||
|    *  | a51 | a52 | a53 | a54 | a55 | a56 | a57 | | ||||
|    * | ||||
|    *  | a61 | a62 | a63 | a64 | a65 | a66 | a67 | | ||||
|    * | ||||
|    * | ||||
|    *  We operates on multiple-of-4 rows, so the first four rows becomes | ||||
|    * | ||||
|    *  | a11 | a21 | a13 | a23 | a31 | a41 | a33 | a43 | | ||||
|    * | ||||
|    *  | a12 | a22 | a14 | a24 | a32 | a42 | a34 | a44 | | ||||
|    * | ||||
|    *  | a15 | a25 | a35 | a45 | a16 | a26 | a36 | a46 | | ||||
|    * | ||||
|    *  So within the kernel, we first read the re-ordered vector in as: | ||||
|    * | ||||
|    *  | b1  | b3  | and | b2  | b4  | | ||||
|    * | ||||
|    *  the four q31_t weights will look like | ||||
|    * | ||||
|    *  | a11 | a13 |, | a21 | a23 |, | a31 | a33 |, | a41 | a43 | | ||||
|    * | ||||
|    *  | a12 | a14 |, | a22 | a24 |, | a32 | a34 |, | a42 | a44 | | ||||
|    * | ||||
|    *  The column left over will be in-order. | ||||
|    *  which is: | ||||
|    * | ||||
|    *  | a17 | a27 | a37 | a47 | | ||||
|    * | ||||
|    *  For the left-over rows, we do 1x1 computation, so the data remains | ||||
|    *  as its original order.  | ||||
|    * | ||||
|    *  So the stored weight matrix looks like this: | ||||
|    * | ||||
|    *  | a11 | a21 | a13 | a23 | a31 | a41 | | ||||
|    * | ||||
|    *  | a33 | a43 | a12 | a22 | a14 | a24 | | ||||
|    * | ||||
|    *  | a32 | a42 | a34 | a44 | a15 | a25 | | ||||
|    * | ||||
|    *  | a35 | a45 | a16 | a26 | a36 | a46 | | ||||
|    * | ||||
|    *  | a17 | a27 | a37 | a47 | a51 | a52 | | ||||
|    * | ||||
|    *  | a53 | a54 | a55 | a56 | a57 | a61 | | ||||
|    * | ||||
|    *  | a62 | a63 | a64 | a65 | a66 | a67 | | ||||
|    * | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| arm_status | ||||
| arm_fully_connected_q7_opt(const q7_t * pV, | ||||
|                            const q7_t * pM, | ||||
|                            const uint16_t dim_vec, | ||||
|                            const uint16_t num_of_rows, | ||||
|                            const uint16_t bias_shift, | ||||
|                            const uint16_t out_shift,  | ||||
|                            const q7_t * bias,  | ||||
|                            q7_t * pOut,  | ||||
|                            q15_t * vec_buffer) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     const q7_t *pB = pM; | ||||
|     q7_t     *pO = pOut; | ||||
|     const q7_t *pBias = bias; | ||||
|     q15_t    *pA; | ||||
|     uint16_t  rowCnt = num_of_rows >> 2; | ||||
|  | ||||
|     arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec); | ||||
|  | ||||
|     while (rowCnt) | ||||
|     { | ||||
|  | ||||
|         q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|         uint16_t  colCnt = dim_vec >> 2; | ||||
|  | ||||
|         pA = vec_buffer; | ||||
|  | ||||
| #ifdef USE_INTRINSIC | ||||
|  | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inM11, inM12, inM13, inM14; | ||||
|             q31_t     inV; | ||||
|  | ||||
|             inV = *__SIMD32(pA)++; | ||||
|             inM11 = *__SIMD32(pB)++; | ||||
|             inM12 = __SXTB16(__ROR(inM11, 8)); | ||||
|             inM11 = __SXTB16(inM11); | ||||
|             sum = __SMLAD(inM11, inV, sum); | ||||
|             sum2 = __SMLAD(inM12, inV, sum2); | ||||
|             inM13 = *__SIMD32(pB)++; | ||||
|             inM14 = __SXTB16(__ROR(inM13, 8)); | ||||
|             inM13 = __SXTB16(inM13); | ||||
|             sum3 = __SMLAD(inM13, inV, sum3); | ||||
|             sum4 = __SMLAD(inM14, inV, sum4); | ||||
|  | ||||
|             inV = *__SIMD32(pA)++; | ||||
|             inM11 = *__SIMD32(pB)++; | ||||
|             inM12 = __SXTB16(__ROR(inM11, 8)); | ||||
|             inM11 = __SXTB16(inM11); | ||||
|             sum = __SMLAD(inM11, inV, sum); | ||||
|             sum2 = __SMLAD(inM12, inV, sum2); | ||||
|             inM13 = *__SIMD32(pB)++; | ||||
|             inM14 = __SXTB16(__ROR(inM13, 8)); | ||||
|             inM13 = __SXTB16(inM13); | ||||
|             sum3 = __SMLAD(inM13, inV, sum3); | ||||
|             sum4 = __SMLAD(inM14, inV, sum4); | ||||
|             colCnt--; | ||||
|         } | ||||
| #else | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inM11, inM12, inM13, inM14; | ||||
|             q31_t     inV; | ||||
|  | ||||
|             inV = *__SIMD32(pA)++; | ||||
|             inM11 = *__SIMD32(pB)++; | ||||
|             inM12 = __SXTB16(__ROR(inM11, 8)); | ||||
|             inM11 = __SXTB16(inM11); | ||||
|             sum = __SMLAD(inM12, inV, sum); | ||||
|             sum2 = __SMLAD(inM11, inV, sum2); | ||||
|             inM13 = *__SIMD32(pB)++; | ||||
|             inM14 = __SXTB16(__ROR(inM13, 8)); | ||||
|             inM13 = __SXTB16(inM13); | ||||
|             sum3 = __SMLAD(inM14, inV, sum3); | ||||
|             sum4 = __SMLAD(inM13, inV, sum4); | ||||
|  | ||||
|             inV = *__SIMD32(pA)++; | ||||
|             inM11 = *__SIMD32(pB)++; | ||||
|             inM12 = __SXTB16(__ROR(inM11, 8)); | ||||
|             inM11 = __SXTB16(inM11); | ||||
|             sum = __SMLAD(inM12, inV, sum); | ||||
|             sum2 = __SMLAD(inM11, inV, sum2); | ||||
|             inM13 = *__SIMD32(pB)++; | ||||
|             inM14 = __SXTB16(__ROR(inM13, 8)); | ||||
|             inM13 = __SXTB16(inM13); | ||||
|             sum3 = __SMLAD(inM14, inV, sum3); | ||||
|             sum4 = __SMLAD(inM13, inV, sum4); | ||||
|             colCnt--; | ||||
|         } | ||||
| #endif                          /* ARM_MATH_BIG_ENDIAN */ | ||||
|  | ||||
| #else | ||||
|  | ||||
|         /* | ||||
|          * register needed: | ||||
|          * loop counter: colCnt | ||||
|          * accumulators: sum, sum2, sum3, sum4 | ||||
|          * pointers: pB, pA | ||||
|          * weight data: inM11, inM12, inM13, inM14 | ||||
|          * activation data: inV | ||||
|          */ | ||||
|  | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|         asm volatile ("COL_LOOP_%=:\n" | ||||
|                       "ldr.w r4, [%[pA]], #8\n" | ||||
|                       "ldr.w r1, [%[pB]], #16\n" | ||||
|                       "mov.w r0, r1, ror #8\n" | ||||
|                       "sxtb16 r0, r0\n" | ||||
|                       "sxtb16 r1, r1\n" | ||||
|                       "smlad %[sum], r4, r1, %[sum]\n" | ||||
|                       "smlad %[sum2], r4, r0, %[sum2]\n" | ||||
|                       "ldr.w r3, [%[pB], #-12]\n" | ||||
|                       "mov.w r2, r3, ror #8\n" | ||||
|                       "sxtb16 r2, r2\n" | ||||
|                       "sxtb16 r3, r3\n" | ||||
|                       "smlad %[sum3], r4, r3, %[sum3]\n" | ||||
|                       "smlad %[sum4], r4, r2, %[sum4]\n" | ||||
|                       "ldr.w r4, [%[pA], #-4]\n" | ||||
|                       "ldr.w r1, [%[pB], #-8]\n" | ||||
|                       "mov.w r0, r1, ror #8\n" | ||||
|                       "sxtb16 r0, r0\n" | ||||
|                       "sxtb16 r1, r1\n" | ||||
|                       "smlad %[sum], r4, r1, %[sum]\n" | ||||
|                       "smlad %[sum2], r4, r0, %[sum2]\n" | ||||
|                       "ldr.w r3, [%[pB], #-4]\n" | ||||
|                       "mov.w r2, r3, ror #8\n" | ||||
|                       "sxtb16 r2, r2\n" | ||||
|                       "sxtb16 r3, r3\n" | ||||
|                       "smlad %[sum3], r4, r3, %[sum3]\n" | ||||
|                       "smlad %[sum4], r4, r2, %[sum4]\n" | ||||
|                       "subs %[colCnt], #1\n" | ||||
|                       "bne COL_LOOP_%=\n":[sum] "+r"(sum), | ||||
|                       [sum2] "+r"(sum2),[sum3] "+r"(sum3), | ||||
|                       [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4"); | ||||
| #else | ||||
|         asm volatile ("COL_LOOP_%=:\n" | ||||
|                       "ldr.w r4, [%[pA]], #8\n" | ||||
|                       "ldr.w r1, [%[pB]], #16\n" | ||||
|                       "mov.w r0, r1, ror #8\n" | ||||
|                       "sxtb16 r0, r0\n" | ||||
|                       "sxtb16 r1, r1\n" | ||||
|                       "smlad %[sum], r4, r0, %[sum]\n" | ||||
|                       "smlad %[sum2], r4, r1, %[sum2]\n" | ||||
|                       "ldr.w r3, [%[pB], #-12]\n" | ||||
|                       "mov.w r2, r3, ror #8\n" | ||||
|                       "sxtb16 r2, r2\n" | ||||
|                       "sxtb16 r3, r3\n" | ||||
|                       "smlad %[sum3], r4, r2, %[sum3]\n" | ||||
|                       "smlad %[sum4], r4, r3, %[sum4]\n" | ||||
|                       "ldr.w r4, [%[pA], #-4]\n" | ||||
|                       "ldr.w r1, [%[pB], #-8]\n" | ||||
|                       "mov.w r0, r1, ror #8\n" | ||||
|                       "sxtb16 r0, r0\n" | ||||
|                       "sxtb16 r1, r1\n" | ||||
|                       "smlad %[sum], r4, r0, %[sum]\n" | ||||
|                       "smlad %[sum2], r4, r1, %[sum2]\n" | ||||
|                       "ldr.w r3, [%[pB], #-4]\n" | ||||
|                       "mov.w r2, r3, ror #8\n" | ||||
|                       "sxtb16 r2, r2\n" | ||||
|                       "sxtb16 r3, r3\n" | ||||
|                       "smlad %[sum3], r4, r2, %[sum3]\n" | ||||
|                       "smlad %[sum4], r4, r3, %[sum4]\n" | ||||
|                       "subs %[colCnt], #1\n" | ||||
|                       "bne COL_LOOP_%=\n":[sum] "+r"(sum), | ||||
|                       [sum2] "+r"(sum2),[sum3] "+r"(sum3), | ||||
|                       [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4"); | ||||
| #endif                          /* ARM_MATH_BIG_ENDIAN */ | ||||
|  | ||||
| #endif                          /* USE_INTRINSIC */ | ||||
|  | ||||
|         colCnt = dim_vec & 0x3; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q15_t     inV = *pA++; | ||||
|             q7_t      inM = *pB++; | ||||
|             q7_t      inM2 = *pB++; | ||||
|             q7_t      inM3 = *pB++; | ||||
|             q7_t      inM4 = *pB++; | ||||
|  | ||||
|             sum += inV * inM; | ||||
|             sum2 += inV * inM2; | ||||
|             sum3 += inV * inM3; | ||||
|             sum4 += inV * inM4; | ||||
|             colCnt--; | ||||
|         }                       /* while over colCnt */ | ||||
|         *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8)); | ||||
|         *pO++ = (q7_t) (__SSAT((sum2 >> out_shift), 8)); | ||||
|         *pO++ = (q7_t) (__SSAT((sum3 >> out_shift), 8)); | ||||
|         *pO++ = (q7_t) (__SSAT((sum4 >> out_shift), 8)); | ||||
|  | ||||
|         /* adjust the pointers and counters */ | ||||
|         rowCnt--; | ||||
|     } | ||||
|  | ||||
|     /* left-over part of the rows */ | ||||
|     rowCnt = num_of_rows & 0x3; | ||||
|  | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         q31_t     sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         uint16_t  colCnt = dim_vec >> 2; | ||||
|  | ||||
|         pA = vec_buffer; | ||||
|  | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q31_t     inV1, inV2, inM11, inM12; | ||||
|  | ||||
|             pB = (q7_t *) read_and_pad_reordered((void *)pB, &inM11, &inM12); | ||||
|  | ||||
|             inV1 = *__SIMD32(pA)++; | ||||
|             sum = __SMLAD(inV1, inM11, sum); | ||||
|  | ||||
|             inV2 = *__SIMD32(pA)++; | ||||
|             sum = __SMLAD(inV2, inM12, sum); | ||||
|  | ||||
|             colCnt--; | ||||
|         } | ||||
|  | ||||
|         /* left-over of the vector */ | ||||
|         colCnt = dim_vec & 0x3; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q15_t     inV = *pA++; | ||||
|             q7_t      inM = *pB++; | ||||
|             sum += inV * inM; | ||||
|             colCnt--; | ||||
|         } | ||||
|  | ||||
|         *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8)); | ||||
|  | ||||
|         rowCnt--; | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|     uint16_t  rowCnt = num_of_rows >> 2; | ||||
|     const q7_t *pB = pM; | ||||
|     const q7_t *pA; | ||||
|     q7_t     *pO = pOut; | ||||
|     const q7_t *pBias = bias; | ||||
|  | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         q31_t     sum =  ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|         q31_t     sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|         uint16_t  colCnt = dim_vec >> 2; | ||||
|  | ||||
|         pA = pV; | ||||
|  | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q7_t      inA1 = *pA++; | ||||
|             q7_t      inA3 = *pA++; | ||||
|             q7_t      inA2 = *pA++; | ||||
|             q7_t      inA4 = *pA++; | ||||
|  | ||||
|             q7_t      inB1 = *pB++; | ||||
|             q7_t      inB3 = *pB++; | ||||
|             q7_t      inB2 = *pB++; | ||||
|             q7_t      inB4 = *pB++; | ||||
|  | ||||
|             sum += inA1 * inB1 + inA2 * inB2; | ||||
|             sum2 += inA1 * inB3 + inA2 * inB4; | ||||
|  | ||||
|             inB1 = *pB++; | ||||
|             inB3 = *pB++; | ||||
|             inB2 = *pB++; | ||||
|             inB4 = *pB++; | ||||
|  | ||||
|             sum3 += inA1 * inB1 + inA2 * inB2; | ||||
|             sum4 += inA1 * inB3 + inA2 * inB4; | ||||
|  | ||||
|             inB1 = *pB++; | ||||
|             inB3 = *pB++; | ||||
|             inB2 = *pB++; | ||||
|             inB4 = *pB++; | ||||
|  | ||||
|             sum += inA3 * inB1 + inA4 * inB2; | ||||
|             sum2 += inA3 * inB3 + inA4 * inB4; | ||||
|  | ||||
|             inB1 = *pB++; | ||||
|             inB3 = *pB++; | ||||
|             inB2 = *pB++; | ||||
|             inB4 = *pB++; | ||||
|  | ||||
|             sum3 += inA3 * inB1 + inA4 * inB2; | ||||
|             sum4 += inA3 * inB3 + inA4 * inB4; | ||||
|  | ||||
|             colCnt--; | ||||
|         } | ||||
|         colCnt = dim_vec & 0x3; | ||||
|         while (colCnt) | ||||
|         { | ||||
|             q7_t      inA = *pA++; | ||||
|             q7_t      inB = *pB++; | ||||
|             sum += inA * inB; | ||||
|             inB = *pB++; | ||||
|             sum2 += inA * inB; | ||||
|             inB = *pB++; | ||||
|             sum3 += inA * inB; | ||||
|             inB = *pB++; | ||||
|             sum4 += inA * inB; | ||||
|  | ||||
|             colCnt--; | ||||
|         } | ||||
|         *pO++ = (q7_t) __SSAT((sum >> out_shift), 8); | ||||
|         *pO++ = (q7_t) __SSAT((sum2 >> out_shift), 8); | ||||
|         *pO++ = (q7_t) __SSAT((sum3 >> out_shift), 8); | ||||
|         *pO++ = (q7_t) __SSAT((sum4 >> out_shift), 8); | ||||
|  | ||||
|         rowCnt--; | ||||
|     } | ||||
|  | ||||
|     rowCnt = num_of_rows & 0x3; | ||||
|  | ||||
|     while (rowCnt) | ||||
|     { | ||||
|         int       ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); | ||||
|  | ||||
|         int       j; | ||||
|  | ||||
|         pA = pV; | ||||
|         for (j = 0; j < dim_vec; j++) | ||||
|         { | ||||
|             q7_t      inA = *pA++; | ||||
|             q7_t      inB = *pB++; | ||||
|             ip_out += inA * inB; | ||||
|         } | ||||
|         *pO++ = (q7_t) __SSAT((ip_out >> out_shift), 8); | ||||
|  | ||||
|         rowCnt--; | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
|     /* Return to ARM_MATH_SUCCESS */ | ||||
|     return (ARM_MATH_SUCCESS); | ||||
|  | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of FC group | ||||
|  */ | ||||
							
								
								
									
										147
									
								
								Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q15.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										147
									
								
								Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q15.c
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,147 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_nn_mult_q15.c | ||||
|  * Description:  Q15 vector multiplication with variable output shifts | ||||
|  * | ||||
|  * $Date:        13. July 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /**     | ||||
|  * @ingroup groupSupport     | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNBasicMath | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|  | ||||
| /** | ||||
|  * @brief           Q7 vector multiplication with variable output shifts | ||||
|  * @param[in]       *pSrcA        pointer to the first input vector | ||||
|  * @param[in]       *pSrcB        pointer to the second input vector | ||||
|  * @param[out]      *pDst         pointer to the output vector | ||||
|  * @param[in]       out_shift     amount of right-shift for output | ||||
|  * @param[in]       blockSize     number of samples in each vector | ||||
|  * @return none. | ||||
|  * | ||||
|  * <b>Scaling and Overflow Behavior:</b> | ||||
|  * \par | ||||
|  * The function uses saturating arithmetic. | ||||
|  * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated. | ||||
|  */ | ||||
|  | ||||
| void arm_nn_mult_q15( | ||||
|   q15_t * pSrcA, | ||||
|   q15_t * pSrcB, | ||||
|   q15_t * pDst, | ||||
|   const uint16_t out_shift, | ||||
|   uint32_t blockSize) | ||||
| { | ||||
|   uint32_t blkCnt;                               /* loop counters */ | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|  | ||||
| /* Run the below code for Cortex-M4 and Cortex-M3 */ | ||||
|   q31_t inA1, inA2, inB1, inB2;                  /* temporary input variables */ | ||||
|   q15_t out1, out2, out3, out4;                  /* temporary output variables */ | ||||
|   q31_t mul1, mul2, mul3, mul4;                  /* temporary variables */ | ||||
|  | ||||
|   /* loop Unrolling */ | ||||
|   blkCnt = blockSize >> 2U; | ||||
|  | ||||
|   /* First part of the processing with loop unrolling.  Compute 4 outputs at a time. | ||||
|    ** a second loop below computes the remaining 1 to 3 samples. */ | ||||
|   while (blkCnt > 0U) | ||||
|   { | ||||
|     /* read two samples at a time from sourceA */ | ||||
|     inA1 = *__SIMD32(pSrcA)++; | ||||
|     /* read two samples at a time from sourceB */ | ||||
|     inB1 = *__SIMD32(pSrcB)++; | ||||
|     /* read two samples at a time from sourceA */ | ||||
|     inA2 = *__SIMD32(pSrcA)++; | ||||
|     /* read two samples at a time from sourceB */ | ||||
|     inB2 = *__SIMD32(pSrcB)++; | ||||
|  | ||||
|     /* multiply mul = sourceA * sourceB */ | ||||
|     mul1 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16)); | ||||
|     mul2 = (q31_t) ((q15_t) inA1 * (q15_t) inB1); | ||||
|     mul3 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB2 >> 16)); | ||||
|     mul4 = (q31_t) ((q15_t) inA2 * (q15_t) inB2); | ||||
|  | ||||
|     /* saturate result to 16 bit */ | ||||
|     out1 = (q15_t) __SSAT((mul1 + NN_ROUND(out_shift)) >> out_shift, 16); | ||||
|     out2 = (q15_t) __SSAT((mul2 + NN_ROUND(out_shift)) >> out_shift, 16); | ||||
|     out3 = (q15_t) __SSAT((mul3 + NN_ROUND(out_shift)) >> out_shift, 16); | ||||
|     out4 = (q15_t) __SSAT((mul4 + NN_ROUND(out_shift)) >> out_shift, 16); | ||||
|  | ||||
|     /* store the result */ | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|  | ||||
|     *__SIMD32(pDst)++ = __PKHBT(out2, out1, 16); | ||||
|     *__SIMD32(pDst)++ = __PKHBT(out4, out3, 16); | ||||
|  | ||||
| #else | ||||
|  | ||||
|     *__SIMD32(pDst)++ = __PKHBT(out2, out1, 16); | ||||
|     *__SIMD32(pDst)++ = __PKHBT(out4, out3, 16); | ||||
|  | ||||
| #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ | ||||
|  | ||||
|     /* Decrement the blockSize loop counter */ | ||||
|     blkCnt--; | ||||
|   } | ||||
|  | ||||
|   /* If the blockSize is not a multiple of 4, compute any remaining output samples here. | ||||
|    ** No loop unrolling is used. */ | ||||
|   blkCnt = blockSize % 0x4U; | ||||
|  | ||||
| #else | ||||
|  | ||||
|   /* Run the below code for Cortex-M0 */ | ||||
|  | ||||
|   /* Initialize blkCnt with number of samples */ | ||||
|   blkCnt = blockSize; | ||||
|  | ||||
| #endif /* #if defined (ARM_MATH_DSP) */ | ||||
|  | ||||
|  | ||||
|   while (blkCnt > 0U) | ||||
|   { | ||||
|     /* C = A * B */ | ||||
|     /* Multiply the inputs and store the result in the destination buffer */ | ||||
|     *pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 16); | ||||
|  | ||||
|     /* Decrement the blockSize loop counter */ | ||||
|     blkCnt--; | ||||
|   } | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNBasicMath group | ||||
|  */ | ||||
|  | ||||
							
								
								
									
										119
									
								
								Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q7.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										119
									
								
								Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q7.c
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,119 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_nn_mult_q7.c | ||||
|  * Description:  Q7 vector multiplication with variable output shifts | ||||
|  * | ||||
|  * $Date:        13. July 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /**     | ||||
|  * @ingroup groupSupport     | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup NNBasicMath | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @brief           Q7 vector multiplication with variable output shifts | ||||
|  * @param[in]       *pSrcA        pointer to the first input vector | ||||
|  * @param[in]       *pSrcB        pointer to the second input vector | ||||
|  * @param[out]      *pDst         pointer to the output vector | ||||
|  * @param[in]       out_shift     amount of right-shift for output | ||||
|  * @param[in]       blockSize     number of samples in each vector | ||||
|  * @return none. | ||||
|  * | ||||
|  * <b>Scaling and Overflow Behavior:</b> | ||||
|  * \par | ||||
|  * The function uses saturating arithmetic. | ||||
|  * Results outside of the allowable Q7 range [0x80 0x7F] will be saturated. | ||||
|  */ | ||||
|  | ||||
| void arm_nn_mult_q7( | ||||
|   q7_t * pSrcA, | ||||
|   q7_t * pSrcB, | ||||
|   q7_t * pDst, | ||||
|   const uint16_t out_shift, | ||||
|   uint32_t blockSize) | ||||
| { | ||||
|   uint32_t blkCnt;                               /* loop counters */ | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|  | ||||
| /* Run the below code for Cortex-M4 and Cortex-M3 */ | ||||
|   q7_t out1, out2, out3, out4;                   /* Temporary variables to store the product */ | ||||
|  | ||||
|   /* loop Unrolling */ | ||||
|   blkCnt = blockSize >> 2U; | ||||
|  | ||||
|   /* First part of the processing with loop unrolling.  Compute 4 outputs at a time. | ||||
|    ** a second loop below computes the remaining 1 to 3 samples. */ | ||||
|   while (blkCnt > 0U) | ||||
|   { | ||||
|     /* C = A * B */ | ||||
|     /* Multiply the inputs and store the results in temporary variables */ | ||||
|     out1 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8); | ||||
|     out2 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8); | ||||
|     out3 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8); | ||||
|     out4 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8); | ||||
|  | ||||
|     /* Store the results of 4 inputs in the destination buffer in single cycle by packing */ | ||||
|     *__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4); | ||||
|  | ||||
|     /* Decrement the blockSize loop counter */ | ||||
|     blkCnt--; | ||||
|   } | ||||
|  | ||||
|   /* If the blockSize is not a multiple of 4, compute any remaining output samples here. | ||||
|    ** No loop unrolling is used. */ | ||||
|   blkCnt = blockSize % 0x4U; | ||||
|  | ||||
| #else | ||||
|  | ||||
|   /* Run the below code for Cortex-M0 */ | ||||
|  | ||||
|   /* Initialize blkCnt with number of samples */ | ||||
|   blkCnt = blockSize; | ||||
|  | ||||
| #endif /* #if defined (ARM_MATH_DSP) */ | ||||
|  | ||||
|  | ||||
|   while (blkCnt > 0U) | ||||
|   { | ||||
|     /* C = A * B */ | ||||
|     /* Multiply the inputs and store the result in the destination buffer */ | ||||
|     *pDst++ = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8); | ||||
|  | ||||
|     /* Decrement the blockSize loop counter */ | ||||
|     blkCnt--; | ||||
|   } | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of NNBasicMath group | ||||
|  */ | ||||
							
								
								
									
										297
									
								
								Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nntables.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										297
									
								
								Drivers/CMSIS/NN/Source/NNSupportFunctions/arm_nntables.c
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,297 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_nntables.c | ||||
|  * Description:  Converts the elements of the Q7 vector to Q15 vector without left-shift | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_nnsupportfunctions.h" | ||||
|  | ||||
| /** | ||||
|  * @brief tables for various activation functions | ||||
|  * | ||||
|  * This file include the declaration of common tables. | ||||
|  * Most of them are used for activation functions  | ||||
|  * | ||||
|  * Assumption: | ||||
|  * Unified table: input is 3.x format, i.e, range of [-8, 8) | ||||
|  * sigmoid(8) = 0.9996646498695336 | ||||
|  * tanh(8) = 0.9999997749296758 | ||||
|  * The accuracy here should be good enough | ||||
|  * | ||||
|  * 2-stage HL table:  | ||||
|  * | ||||
|  * The entire input range is divided into two parts: | ||||
|  * | ||||
|  * Low range table: 0x000x xxxx or 0x111x xxxx  | ||||
|  * table entry will be the binary number excluding the first | ||||
|  * two digits, i.e., 0x0x xxxx or 0x1x xxxx | ||||
|  *  | ||||
|  * | ||||
|  * | ||||
|  * High range table 0x0010 0000 -- 0x0111 1111 | ||||
|  *                  0x1000 0000 -- 0x1101 1111 | ||||
|  *  | ||||
|  * For positive numbers, table entry will be | ||||
|  * 0x0010 0000 -- 0x0111 1111 minus 0x0010 0000 | ||||
|  * i.e., 0x0000 0000 - 0x0101 11111 | ||||
|  * | ||||
|  * same thing for the negative numbers, table entry will be | ||||
|  * 0x1000 0000 -- 0x1101 1111 minux 0x0010 0000 | ||||
|  * i.e., 0x0110 0000 - 0x1011 1111 | ||||
|  */ | ||||
|  | ||||
| const q7_t sigmoidTable_q7[256] = { | ||||
|     0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, | ||||
|     0x50, 0x52, 0x53, 0x55, 0x57, 0x59, 0x5a, 0x5c, | ||||
|     0x5e, 0x5f, 0x61, 0x62, 0x63, 0x65, 0x66, 0x67, | ||||
|     0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, | ||||
|     0x71, 0x72, 0x72, 0x73, 0x74, 0x74, 0x75, 0x76, | ||||
|     0x76, 0x77, 0x77, 0x78, 0x78, 0x79, 0x79, 0x7a, | ||||
|     0x7a, 0x7a, 0x7b, 0x7b, 0x7b, 0x7c, 0x7c, 0x7c, | ||||
|     0x7c, 0x7c, 0x7d, 0x7d, 0x7d, 0x7d, 0x7d, 0x7e, | ||||
|     0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||||
|     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||||
|     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||||
|     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||||
|     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||||
|     0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, | ||||
|     0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, | ||||
|     0x01, 0x01, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, | ||||
|     0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x04, | ||||
|     0x04, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x06, | ||||
|     0x06, 0x06, 0x07, 0x07, 0x08, 0x08, 0x09, 0x09, | ||||
|     0x0a, 0x0a, 0x0b, 0x0c, 0x0c, 0x0d, 0x0e, 0x0e, | ||||
|     0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, | ||||
|     0x17, 0x19, 0x1a, 0x1b, 0x1d, 0x1e, 0x1f, 0x21, | ||||
|     0x22, 0x24, 0x26, 0x27, 0x29, 0x2b, 0x2d, 0x2e, | ||||
|     0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e, | ||||
| }; | ||||
|  | ||||
| const q15_t sigmoidTable_q15[256] = { | ||||
|     0x4000, 0x4200, 0x43ff, 0x45fc, 0x47f5, 0x49eb, 0x4bdc, 0x4dc8, | ||||
|     0x4fad, 0x518a, 0x5360, 0x552c, 0x56ef, 0x58a8, 0x5a57, 0x5bfb, | ||||
|     0x5d93, 0x5f20, 0x60a1, 0x6216, 0x637f, 0x64db, 0x662b, 0x676f, | ||||
|     0x68a6, 0x69d2, 0x6af1, 0x6c05, 0x6d0d, 0x6e09, 0x6efb, 0x6fe2, | ||||
|     0x70be, 0x7190, 0x7258, 0x7316, 0x73cc, 0x7478, 0x751b, 0x75b7, | ||||
|     0x764a, 0x76d6, 0x775b, 0x77d8, 0x784f, 0x78c0, 0x792a, 0x798f, | ||||
|     0x79ee, 0x7a48, 0x7a9d, 0x7aed, 0x7b39, 0x7b80, 0x7bc4, 0x7c03, | ||||
|     0x7c3f, 0x7c78, 0x7cad, 0x7ce0, 0x7d0f, 0x7d3c, 0x7d66, 0x7d8d, | ||||
|     0x7db3, 0x7dd6, 0x7df7, 0x7e16, 0x7e33, 0x7e4f, 0x7e69, 0x7e81, | ||||
|     0x7e98, 0x7eae, 0x7ec2, 0x7ed5, 0x7ee7, 0x7ef8, 0x7f08, 0x7f17, | ||||
|     0x7f25, 0x7f32, 0x7f3e, 0x7f4a, 0x7f55, 0x7f5f, 0x7f69, 0x7f72, | ||||
|     0x7f7b, 0x7f83, 0x7f8a, 0x7f91, 0x7f98, 0x7f9e, 0x7fa4, 0x7faa, | ||||
|     0x7faf, 0x7fb4, 0x7fb8, 0x7fbd, 0x7fc1, 0x7fc5, 0x7fc8, 0x7fcc, | ||||
|     0x7fcf, 0x7fd2, 0x7fd5, 0x7fd7, 0x7fda, 0x7fdc, 0x7fde, 0x7fe0, | ||||
|     0x7fe2, 0x7fe4, 0x7fe6, 0x7fe7, 0x7fe9, 0x7fea, 0x7feb, 0x7fed, | ||||
|     0x7fee, 0x7fef, 0x7ff0, 0x7ff1, 0x7ff2, 0x7ff3, 0x7ff4, 0x7ff4, | ||||
|     0x000b, 0x000c, 0x000c, 0x000d, 0x000e, 0x000f, 0x0010, 0x0011, | ||||
|     0x0012, 0x0013, 0x0015, 0x0016, 0x0017, 0x0019, 0x001a, 0x001c, | ||||
|     0x001e, 0x0020, 0x0022, 0x0024, 0x0026, 0x0029, 0x002b, 0x002e, | ||||
|     0x0031, 0x0034, 0x0038, 0x003b, 0x003f, 0x0043, 0x0048, 0x004c, | ||||
|     0x0051, 0x0056, 0x005c, 0x0062, 0x0068, 0x006f, 0x0076, 0x007d, | ||||
|     0x0085, 0x008e, 0x0097, 0x00a1, 0x00ab, 0x00b6, 0x00c2, 0x00ce, | ||||
|     0x00db, 0x00e9, 0x00f8, 0x0108, 0x0119, 0x012b, 0x013e, 0x0152, | ||||
|     0x0168, 0x017f, 0x0197, 0x01b1, 0x01cd, 0x01ea, 0x0209, 0x022a, | ||||
|     0x024d, 0x0273, 0x029a, 0x02c4, 0x02f1, 0x0320, 0x0353, 0x0388, | ||||
|     0x03c1, 0x03fd, 0x043c, 0x0480, 0x04c7, 0x0513, 0x0563, 0x05b8, | ||||
|     0x0612, 0x0671, 0x06d6, 0x0740, 0x07b1, 0x0828, 0x08a5, 0x092a, | ||||
|     0x09b6, 0x0a49, 0x0ae5, 0x0b88, 0x0c34, 0x0cea, 0x0da8, 0x0e70, | ||||
|     0x0f42, 0x101e, 0x1105, 0x11f7, 0x12f3, 0x13fb, 0x150f, 0x162e, | ||||
|     0x175a, 0x1891, 0x19d5, 0x1b25, 0x1c81, 0x1dea, 0x1f5f, 0x20e0, | ||||
|     0x226d, 0x2405, 0x25a9, 0x2758, 0x2911, 0x2ad4, 0x2ca0, 0x2e76, | ||||
|     0x3053, 0x3238, 0x3424, 0x3615, 0x380b, 0x3a04, 0x3c01, 0x3e00, | ||||
| }; | ||||
|  | ||||
| const q15_t sigmoidLTable_q15[128] = { | ||||
|     0x4000, 0x4100, 0x4200, 0x42ff, 0x43ff, 0x44fd, 0x45fc, 0x46f9, | ||||
|     0x47f5, 0x48f1, 0x49eb, 0x4ae5, 0x4bdc, 0x4cd3, 0x4dc8, 0x4ebb, | ||||
|     0x4fad, 0x509c, 0x518a, 0x5276, 0x5360, 0x5447, 0x552c, 0x560f, | ||||
|     0x56ef, 0x57cd, 0x58a8, 0x5981, 0x5a57, 0x5b2a, 0x5bfb, 0x5cc9, | ||||
|     0x5d93, 0x5e5b, 0x5f20, 0x5fe2, 0x60a1, 0x615d, 0x6216, 0x62cc, | ||||
|     0x637f, 0x642e, 0x64db, 0x6584, 0x662b, 0x66ce, 0x676f, 0x680c, | ||||
|     0x68a6, 0x693d, 0x69d2, 0x6a63, 0x6af1, 0x6b7c, 0x6c05, 0x6c8a, | ||||
|     0x6d0d, 0x6d8d, 0x6e09, 0x6e84, 0x6efb, 0x6f70, 0x6fe2, 0x7051, | ||||
|     0x0f42, 0x0faf, 0x101e, 0x1090, 0x1105, 0x117c, 0x11f7, 0x1273, | ||||
|     0x12f3, 0x1376, 0x13fb, 0x1484, 0x150f, 0x159d, 0x162e, 0x16c3, | ||||
|     0x175a, 0x17f4, 0x1891, 0x1932, 0x19d5, 0x1a7c, 0x1b25, 0x1bd2, | ||||
|     0x1c81, 0x1d34, 0x1dea, 0x1ea3, 0x1f5f, 0x201e, 0x20e0, 0x21a5, | ||||
|     0x226d, 0x2337, 0x2405, 0x24d6, 0x25a9, 0x267f, 0x2758, 0x2833, | ||||
|     0x2911, 0x29f1, 0x2ad4, 0x2bb9, 0x2ca0, 0x2d8a, 0x2e76, 0x2f64, | ||||
|     0x3053, 0x3145, 0x3238, 0x332d, 0x3424, 0x351b, 0x3615, 0x370f, | ||||
|     0x380b, 0x3907, 0x3a04, 0x3b03, 0x3c01, 0x3d01, 0x3e00, 0x3f00, | ||||
| }; | ||||
|  | ||||
| const q15_t sigmoidHTable_q15[192] = { | ||||
|     0x70be, 0x7190, 0x7258, 0x7316, 0x73cc, 0x7478, 0x751b, 0x75b7, | ||||
|     0x764a, 0x76d6, 0x775b, 0x77d8, 0x784f, 0x78c0, 0x792a, 0x798f, | ||||
|     0x79ee, 0x7a48, 0x7a9d, 0x7aed, 0x7b39, 0x7b80, 0x7bc4, 0x7c03, | ||||
|     0x7c3f, 0x7c78, 0x7cad, 0x7ce0, 0x7d0f, 0x7d3c, 0x7d66, 0x7d8d, | ||||
|     0x7db3, 0x7dd6, 0x7df7, 0x7e16, 0x7e33, 0x7e4f, 0x7e69, 0x7e81, | ||||
|     0x7e98, 0x7eae, 0x7ec2, 0x7ed5, 0x7ee7, 0x7ef8, 0x7f08, 0x7f17, | ||||
|     0x7f25, 0x7f32, 0x7f3e, 0x7f4a, 0x7f55, 0x7f5f, 0x7f69, 0x7f72, | ||||
|     0x7f7b, 0x7f83, 0x7f8a, 0x7f91, 0x7f98, 0x7f9e, 0x7fa4, 0x7faa, | ||||
|     0x7faf, 0x7fb4, 0x7fb8, 0x7fbd, 0x7fc1, 0x7fc5, 0x7fc8, 0x7fcc, | ||||
|     0x7fcf, 0x7fd2, 0x7fd5, 0x7fd7, 0x7fda, 0x7fdc, 0x7fde, 0x7fe0, | ||||
|     0x7fe2, 0x7fe4, 0x7fe6, 0x7fe7, 0x7fe9, 0x7fea, 0x7feb, 0x7fed, | ||||
|     0x7fee, 0x7fef, 0x7ff0, 0x7ff1, 0x7ff2, 0x7ff3, 0x7ff4, 0x7ff4, | ||||
|     0x000b, 0x000c, 0x000c, 0x000d, 0x000e, 0x000f, 0x0010, 0x0011, | ||||
|     0x0012, 0x0013, 0x0015, 0x0016, 0x0017, 0x0019, 0x001a, 0x001c, | ||||
|     0x001e, 0x0020, 0x0022, 0x0024, 0x0026, 0x0029, 0x002b, 0x002e, | ||||
|     0x0031, 0x0034, 0x0038, 0x003b, 0x003f, 0x0043, 0x0048, 0x004c, | ||||
|     0x0051, 0x0056, 0x005c, 0x0062, 0x0068, 0x006f, 0x0076, 0x007d, | ||||
|     0x0085, 0x008e, 0x0097, 0x00a1, 0x00ab, 0x00b6, 0x00c2, 0x00ce, | ||||
|     0x00db, 0x00e9, 0x00f8, 0x0108, 0x0119, 0x012b, 0x013e, 0x0152, | ||||
|     0x0168, 0x017f, 0x0197, 0x01b1, 0x01cd, 0x01ea, 0x0209, 0x022a, | ||||
|     0x024d, 0x0273, 0x029a, 0x02c4, 0x02f1, 0x0320, 0x0353, 0x0388, | ||||
|     0x03c1, 0x03fd, 0x043c, 0x0480, 0x04c7, 0x0513, 0x0563, 0x05b8, | ||||
|     0x0612, 0x0671, 0x06d6, 0x0740, 0x07b1, 0x0828, 0x08a5, 0x092a, | ||||
|     0x09b6, 0x0a49, 0x0ae5, 0x0b88, 0x0c34, 0x0cea, 0x0da8, 0x0e70, | ||||
| }; | ||||
|  | ||||
| const q7_t tanhTable_q7[256] = { | ||||
|     0x00, 0x08, 0x10, 0x18, 0x1f, 0x27, 0x2e, 0x35, | ||||
|     0x3b, 0x41, 0x47, 0x4c, 0x51, 0x56, 0x5a, 0x5e, | ||||
|     0x61, 0x65, 0x68, 0x6a, 0x6d, 0x6f, 0x71, 0x72, | ||||
|     0x74, 0x75, 0x76, 0x78, 0x78, 0x79, 0x7a, 0x7b, | ||||
|     0x7b, 0x7c, 0x7c, 0x7d, 0x7d, 0x7e, 0x7e, 0x7e, | ||||
|     0x7e, 0x7e, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, | ||||
|     0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, | ||||
|     0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, | ||||
|     0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, | ||||
|     0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, | ||||
|     0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, | ||||
|     0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, | ||||
|     0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, | ||||
|     0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, | ||||
|     0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, | ||||
|     0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x81, | ||||
|     0x81, 0x81, 0x81, 0x81, 0x81, 0x81, 0x81, 0x82, | ||||
|     0x82, 0x82, 0x82, 0x82, 0x83, 0x83, 0x84, 0x84, | ||||
|     0x85, 0x85, 0x86, 0x87, 0x88, 0x88, 0x8a, 0x8b, | ||||
|     0x8c, 0x8e, 0x8f, 0x91, 0x93, 0x96, 0x98, 0x9b, | ||||
|     0x9f, 0xa2, 0xa6, 0xaa, 0xaf, 0xb4, 0xb9, 0xbf, | ||||
|     0xc5, 0xcb, 0xd2, 0xd9, 0xe1, 0xe8, 0xf0, 0xf8, | ||||
| }; | ||||
|  | ||||
| const q15_t tanhTable_q15[256] = { | ||||
|     0x0000, 0x07fd, 0x0feb, 0x17b9, 0x1f59, 0x26bf, 0x2ddf, 0x34ae, | ||||
|     0x3b27, 0x4142, 0x46fd, 0x4c56, 0x514d, 0x55e2, 0x5a1a, 0x5df6, | ||||
|     0x617c, 0x64b0, 0x6797, 0x6a37, 0x6c95, 0x6eb5, 0x709e, 0x7254, | ||||
|     0x73dc, 0x753a, 0x7672, 0x7788, 0x787f, 0x795b, 0x7a1e, 0x7acb, | ||||
|     0x7b65, 0x7bee, 0x7c66, 0x7cd1, 0x7d30, 0x7d84, 0x7dce, 0x7e0f, | ||||
|     0x7e49, 0x7e7d, 0x7eaa, 0x7ed2, 0x7ef5, 0x7f14, 0x7f30, 0x7f48, | ||||
|     0x7f5e, 0x7f71, 0x7f82, 0x7f91, 0x7f9e, 0x7fa9, 0x7fb3, 0x7fbc, | ||||
|     0x7fc4, 0x7fcb, 0x7fd1, 0x7fd7, 0x7fdc, 0x7fe0, 0x7fe4, 0x7fe7, | ||||
|     0x7fea, 0x7fed, 0x7fef, 0x7ff1, 0x7ff3, 0x7ff4, 0x7ff6, 0x7ff7, | ||||
|     0x7ff8, 0x7ff9, 0x7ffa, 0x7ffa, 0x7ffb, 0x7ffc, 0x7ffc, 0x7ffd, | ||||
|     0x7ffd, 0x7ffd, 0x7ffe, 0x7ffe, 0x7ffe, 0x7ffe, 0x7fff, 0x7fff, | ||||
|     0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, | ||||
|     0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, | ||||
|     0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, | ||||
|     0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, | ||||
|     0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, | ||||
|     0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | ||||
|     0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | ||||
|     0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | ||||
|     0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | ||||
|     0x8000, 0x8000, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, | ||||
|     0x8001, 0x8001, 0x8001, 0x8002, 0x8002, 0x8002, 0x8002, 0x8003, | ||||
|     0x8003, 0x8003, 0x8004, 0x8004, 0x8005, 0x8006, 0x8006, 0x8007, | ||||
|     0x8008, 0x8009, 0x800a, 0x800c, 0x800d, 0x800f, 0x8011, 0x8013, | ||||
|     0x8016, 0x8019, 0x801c, 0x8020, 0x8024, 0x8029, 0x802f, 0x8035, | ||||
|     0x803c, 0x8044, 0x804d, 0x8057, 0x8062, 0x806f, 0x807e, 0x808f, | ||||
|     0x80a2, 0x80b8, 0x80d0, 0x80ec, 0x810b, 0x812e, 0x8156, 0x8183, | ||||
|     0x81b7, 0x81f1, 0x8232, 0x827c, 0x82d0, 0x832f, 0x839a, 0x8412, | ||||
|     0x849b, 0x8535, 0x85e2, 0x86a5, 0x8781, 0x8878, 0x898e, 0x8ac6, | ||||
|     0x8c24, 0x8dac, 0x8f62, 0x914b, 0x936b, 0x95c9, 0x9869, 0x9b50, | ||||
|     0x9e84, 0xa20a, 0xa5e6, 0xaa1e, 0xaeb3, 0xb3aa, 0xb903, 0xbebe, | ||||
|     0xc4d9, 0xcb52, 0xd221, 0xd941, 0xe0a7, 0xe847, 0xf015, 0xf803, | ||||
| }; | ||||
|  | ||||
| const q15_t tanhLTable_q15[128] = { | ||||
|     0x0000, 0x0400, 0x07fd, 0x0bf7, 0x0feb, 0x13d7, 0x17b9, 0x1b90, | ||||
|     0x1f59, 0x2314, 0x26bf, 0x2a58, 0x2ddf, 0x3151, 0x34ae, 0x37f6, | ||||
|     0x3b27, 0x3e40, 0x4142, 0x442c, 0x46fd, 0x49b6, 0x4c56, 0x4edd, | ||||
|     0x514d, 0x53a3, 0x55e2, 0x580a, 0x5a1a, 0x5c13, 0x5df6, 0x5fc4, | ||||
|     0x617c, 0x6320, 0x64b0, 0x662d, 0x6797, 0x68f0, 0x6a37, 0x6b6e, | ||||
|     0x6c95, 0x6dac, 0x6eb5, 0x6fb0, 0x709e, 0x717f, 0x7254, 0x731e, | ||||
|     0x73dc, 0x7490, 0x753a, 0x75da, 0x7672, 0x7701, 0x7788, 0x7807, | ||||
|     0x787f, 0x78f0, 0x795b, 0x79bf, 0x7a1e, 0x7a77, 0x7acb, 0x7b1b, | ||||
|     0x849b, 0x84e5, 0x8535, 0x8589, 0x85e2, 0x8641, 0x86a5, 0x8710, | ||||
|     0x8781, 0x87f9, 0x8878, 0x88ff, 0x898e, 0x8a26, 0x8ac6, 0x8b70, | ||||
|     0x8c24, 0x8ce2, 0x8dac, 0x8e81, 0x8f62, 0x9050, 0x914b, 0x9254, | ||||
|     0x936b, 0x9492, 0x95c9, 0x9710, 0x9869, 0x99d3, 0x9b50, 0x9ce0, | ||||
|     0x9e84, 0xa03c, 0xa20a, 0xa3ed, 0xa5e6, 0xa7f6, 0xaa1e, 0xac5d, | ||||
|     0xaeb3, 0xb123, 0xb3aa, 0xb64a, 0xb903, 0xbbd4, 0xbebe, 0xc1c0, | ||||
|     0xc4d9, 0xc80a, 0xcb52, 0xceaf, 0xd221, 0xd5a8, 0xd941, 0xdcec, | ||||
|     0xe0a7, 0xe470, 0xe847, 0xec29, 0xf015, 0xf409, 0xf803, 0xfc00, | ||||
| }; | ||||
|  | ||||
| const q15_t tanhHTable_q15[192] = { | ||||
|     0x7b65, 0x7bee, 0x7c66, 0x7cd1, 0x7d30, 0x7d84, 0x7dce, 0x7e0f, | ||||
|     0x7e49, 0x7e7d, 0x7eaa, 0x7ed2, 0x7ef5, 0x7f14, 0x7f30, 0x7f48, | ||||
|     0x7f5e, 0x7f71, 0x7f82, 0x7f91, 0x7f9e, 0x7fa9, 0x7fb3, 0x7fbc, | ||||
|     0x7fc4, 0x7fcb, 0x7fd1, 0x7fd7, 0x7fdc, 0x7fe0, 0x7fe4, 0x7fe7, | ||||
|     0x7fea, 0x7fed, 0x7fef, 0x7ff1, 0x7ff3, 0x7ff4, 0x7ff6, 0x7ff7, | ||||
|     0x7ff8, 0x7ff9, 0x7ffa, 0x7ffa, 0x7ffb, 0x7ffc, 0x7ffc, 0x7ffd, | ||||
|     0x7ffd, 0x7ffd, 0x7ffe, 0x7ffe, 0x7ffe, 0x7ffe, 0x7fff, 0x7fff, | ||||
|     0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, | ||||
|     0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, | ||||
|     0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, | ||||
|     0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, | ||||
|     0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, | ||||
|     0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | ||||
|     0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | ||||
|     0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | ||||
|     0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, | ||||
|     0x8000, 0x8000, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, | ||||
|     0x8001, 0x8001, 0x8001, 0x8002, 0x8002, 0x8002, 0x8002, 0x8003, | ||||
|     0x8003, 0x8003, 0x8004, 0x8004, 0x8005, 0x8006, 0x8006, 0x8007, | ||||
|     0x8008, 0x8009, 0x800a, 0x800c, 0x800d, 0x800f, 0x8011, 0x8013, | ||||
|     0x8016, 0x8019, 0x801c, 0x8020, 0x8024, 0x8029, 0x802f, 0x8035, | ||||
|     0x803c, 0x8044, 0x804d, 0x8057, 0x8062, 0x806f, 0x807e, 0x808f, | ||||
|     0x80a2, 0x80b8, 0x80d0, 0x80ec, 0x810b, 0x812e, 0x8156, 0x8183, | ||||
|     0x81b7, 0x81f1, 0x8232, 0x827c, 0x82d0, 0x832f, 0x839a, 0x8412, | ||||
| }; | ||||
| @@ -0,0 +1,134 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_q7_to_q15_no_shift.c | ||||
|  * Description:  Converts the elements of the Q7 vector to Q15 vector without left-shift | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_nnsupportfunctions.h" | ||||
|  | ||||
| /**     | ||||
|  * @ingroup groupSupport     | ||||
|  */ | ||||
|  | ||||
| /**     | ||||
|  * @addtogroup nndata_convert     | ||||
|  * @{     | ||||
|  */ | ||||
|  | ||||
| /**     | ||||
|  * @brief Converts the elements of the Q7 vector to Q15 vector without left-shift  | ||||
|  * @param[in]       *pSrc points to the Q7 input vector     | ||||
|  * @param[out]      *pDst points to the Q15 output vector    | ||||
|  * @param[in]       blockSize length of the input vector     | ||||
|  * @return none.     | ||||
|  *     | ||||
|  * \par Description:     | ||||
|  *     | ||||
|  * The equation used for the conversion process is:     | ||||
|  *    | ||||
|  * <pre>     | ||||
|  * 	pDst[n] = (q15_t) pSrc[n];   0 <= n < blockSize.     | ||||
|  * </pre>     | ||||
|  *    | ||||
|  */ | ||||
|  | ||||
| void arm_q7_to_q15_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize) | ||||
| { | ||||
|     const q7_t *pIn = pSrc;     /* Src pointer */ | ||||
|     uint32_t  blkCnt;           /* loop counter */ | ||||
|  | ||||
| #ifndef ARM_MATH_CM0_FAMILY | ||||
|     q31_t     in; | ||||
|     q31_t     in1, in2; | ||||
|     q31_t     out1, out2; | ||||
|  | ||||
|     /* Run the below code for Cortex-M4 and Cortex-M3 */ | ||||
|  | ||||
|     /*loop Unrolling */ | ||||
|     blkCnt = blockSize >> 2u; | ||||
|  | ||||
|     /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.     | ||||
|      ** a second loop below computes the remaining 1 to 3 samples. */ | ||||
|     while (blkCnt > 0u) | ||||
|     { | ||||
|         /* C = (q15_t) A << 8 */ | ||||
|         /* convert from q7 to q15 and then store the results in the destination buffer */ | ||||
|         in = *__SIMD32(pIn)++; | ||||
|  | ||||
|         /* rotatate in by 8 and extend two q7_t values to q15_t values */ | ||||
|         in1 = __SXTB16(__ROR(in, 8)); | ||||
|  | ||||
|         /* extend remainig two q7_t values to q15_t values */ | ||||
|         in2 = __SXTB16(in); | ||||
|  | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|  | ||||
|         out2 = __PKHTB(in1, in2, 16); | ||||
|         out1 = __PKHBT(in2, in1, 16); | ||||
|  | ||||
| #else | ||||
|  | ||||
|         out1 = __PKHTB(in1, in2, 16); | ||||
|         out2 = __PKHBT(in2, in1, 16); | ||||
|  | ||||
| #endif | ||||
|  | ||||
|         *__SIMD32(pDst)++ = out1; | ||||
|         *__SIMD32(pDst)++ = out2; | ||||
|  | ||||
|         /* Decrement the loop counter */ | ||||
|         blkCnt--; | ||||
|     } | ||||
|  | ||||
|     /* If the blockSize is not a multiple of 4, compute any remaining output samples here.     | ||||
|      ** No loop unrolling is used. */ | ||||
|     blkCnt = blockSize % 0x4u; | ||||
|  | ||||
| #else | ||||
|  | ||||
|     /* Run the below code for Cortex-M0 */ | ||||
|  | ||||
|     /* Loop over blockSize number of values */ | ||||
|     blkCnt = blockSize; | ||||
|  | ||||
| #endif                          /* #ifndef ARM_MATH_CM0_FAMILY */ | ||||
|  | ||||
|     while (blkCnt > 0u) | ||||
|     { | ||||
|         /* C = (q15_t) A << 8 */ | ||||
|         /* convert from q7 to q15 and then store the results in the destination buffer */ | ||||
|         *pDst++ = (q15_t) * pIn++; | ||||
|  | ||||
|         /* Decrement the loop counter */ | ||||
|         blkCnt--; | ||||
|     } | ||||
|  | ||||
| } | ||||
|  | ||||
| /**     | ||||
|  * @} end of nndata_convert group    | ||||
|  */ | ||||
| @@ -0,0 +1,145 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_q7_to_q15_reordered_no_shift.c | ||||
|  * Description:  Converts the elements of the Q7 vector to reordered Q15 vector without left-shift | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_nnsupportfunctions.h" | ||||
|  | ||||
| /**     | ||||
|  * @ingroup groupSupport     | ||||
|  */ | ||||
|  | ||||
| /**     | ||||
|  * @addtogroup nndata_convert     | ||||
|  * @{     | ||||
|  */ | ||||
|  | ||||
| /**     | ||||
|  * @brief Converts the elements of the Q7 vector to reordered Q15 vector without left-shift | ||||
|  * @param[in]       *pSrc points to the Q7 input vector     | ||||
|  * @param[out]      *pDst points to the Q15 output vector    | ||||
|  * @param[in]       blockSize length of the input vector     | ||||
|  * @return none.     | ||||
|  *     | ||||
|  * @details | ||||
|  * | ||||
|  * This function does the q7 to q15 expansion with re-ordering  | ||||
|  * | ||||
|  * <pre> | ||||
|  *                          |   A1   |   A2   |   A3   |   A4   | | ||||
|  * | ||||
|  *                           0      7 8     15 16    23 24    31 | ||||
|  * </pre> | ||||
|  * | ||||
|  * is converted into: | ||||
|  * | ||||
|  * <pre> | ||||
|  *  |       A1       |       A3       |   and  |       A2       |       A4       | | ||||
|  * | ||||
|  *   0             15 16            31          0             15 16            31 | ||||
|  * </pre> | ||||
|  * | ||||
|  * | ||||
|  * This looks strange but is natural considering how sign-extension is done at | ||||
|  * assembly level.  | ||||
|  * | ||||
|  * The expansion of other other oprand will follow the same rule so that the end  | ||||
|  * results are the same. | ||||
|  * | ||||
|  * The tail (i.e., last (N % 4) elements) will still be in original order. | ||||
|  *    | ||||
|  */ | ||||
|  | ||||
| void arm_q7_to_q15_reordered_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize) | ||||
| { | ||||
|     const q7_t *pIn = pSrc;     /* Src pointer */ | ||||
|     uint32_t  blkCnt;           /* loop counter */ | ||||
|  | ||||
| #ifndef ARM_MATH_CM0_FAMILY | ||||
|     q31_t     in; | ||||
|     q31_t     in1, in2; | ||||
|  | ||||
|     /* Run the below code for Cortex-M4 and Cortex-M3 */ | ||||
|  | ||||
|     /*loop Unrolling */ | ||||
|     blkCnt = blockSize >> 2u; | ||||
|  | ||||
|     /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.     | ||||
|      ** a second loop below computes the remaining 1 to 3 samples. */ | ||||
|     while (blkCnt > 0u) | ||||
|     { | ||||
|         /* C = (q15_t) A << 8 */ | ||||
|         /* convert from q7 to q15 and then store the results in the destination buffer */ | ||||
|         in = *__SIMD32(pIn)++; | ||||
|  | ||||
|         /* rotatate in by 8 and extend two q7_t values to q15_t values */ | ||||
|         in1 = __SXTB16(__ROR(in, 8)); | ||||
|  | ||||
|         /* extend remainig two q7_t values to q15_t values */ | ||||
|         in2 = __SXTB16(in); | ||||
|  | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|         *__SIMD32(pDst)++ = in2; | ||||
|         *__SIMD32(pDst)++ = in1; | ||||
| #else | ||||
|         *__SIMD32(pDst)++ = in1; | ||||
|         *__SIMD32(pDst)++ = in2; | ||||
| #endif | ||||
|  | ||||
|         /* Decrement the loop counter */ | ||||
|         blkCnt--; | ||||
|     } | ||||
|  | ||||
|     /* If the blockSize is not a multiple of 4, compute any remaining output samples here.     | ||||
|      ** No loop unrolling is used. */ | ||||
|     blkCnt = blockSize % 0x4u; | ||||
|  | ||||
| #else | ||||
|  | ||||
|     /* Run the below code for Cortex-M0 */ | ||||
|  | ||||
|     /* Loop over blockSize number of values */ | ||||
|     blkCnt = blockSize; | ||||
|  | ||||
| #endif                          /* #ifndef ARM_MATH_CM0_FAMILY */ | ||||
|  | ||||
|     while (blkCnt > 0u) | ||||
|     { | ||||
|         /* C = (q15_t) A << 8 */ | ||||
|         /* convert from q7 to q15 and then store the results in the destination buffer */ | ||||
|         *pDst++ = (q15_t) * pIn++; | ||||
|  | ||||
|         /* Decrement the loop counter */ | ||||
|         blkCnt--; | ||||
|     } | ||||
|  | ||||
| } | ||||
|  | ||||
| /**     | ||||
|  * @} end of q7_to_x group     | ||||
|  */ | ||||
							
								
								
									
										448
									
								
								Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										448
									
								
								Drivers/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,448 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_pool_q7_HWC.c | ||||
|  * Description:  Pooling function implementations | ||||
|  * | ||||
|  * $Date:        17. January 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|  | ||||
| /** | ||||
|  * @brief A few utility functions used by pooling functions | ||||
|  * | ||||
|  *  | ||||
|  */ | ||||
|  | ||||
| static void buffer_scale_back_q15_to_q7(q15_t * buffer, q7_t * target, uint16_t length, uint16_t scale) | ||||
| { | ||||
|     int       i; | ||||
|  | ||||
|     for (i = 0; i < length; i++) | ||||
|     { | ||||
|         target[i] = (q7_t) (buffer[i] / scale); | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void compare_and_replace_if_larger_q7(q7_t * base,   // base data | ||||
|                                              q7_t * target, // compare target | ||||
|                                              const uint16_t length  // data length | ||||
|     ) | ||||
| { | ||||
|     q7_t     *pIn = base; | ||||
|     q7_t     *pCom = target; | ||||
|     union arm_nnword in; | ||||
|     union arm_nnword com; | ||||
|     uint16_t  cnt = length >> 2; | ||||
|  | ||||
|     while (cnt > 0u) | ||||
|     { | ||||
|         in.word = *__SIMD32(pIn); | ||||
|         com.word = *__SIMD32(pCom)++; | ||||
|  | ||||
|         // if version | ||||
|         if (com.bytes[0] > in.bytes[0]) | ||||
|             in.bytes[0] = com.bytes[0]; | ||||
|         if (com.bytes[1] > in.bytes[1]) | ||||
|             in.bytes[1] = com.bytes[1]; | ||||
|         if (com.bytes[2] > in.bytes[2]) | ||||
|             in.bytes[2] = com.bytes[2]; | ||||
|         if (com.bytes[3] > in.bytes[3]) | ||||
|             in.bytes[3] = com.bytes[3]; | ||||
|  | ||||
|         *__SIMD32(pIn)++ = in.word; | ||||
|  | ||||
|         cnt--; | ||||
|     } | ||||
| } | ||||
|  | ||||
| static void accumulate_q7_to_q15(q15_t * base, q7_t * target, const uint16_t length) | ||||
| { | ||||
|     q15_t    *pCnt = base; | ||||
|     q7_t     *pV = target; | ||||
|     q31_t     v1, v2, vo1, vo2; | ||||
|     uint16_t  cnt = length >> 2; | ||||
|     q31_t     in; | ||||
|  | ||||
|     while (cnt > 0u) | ||||
|     { | ||||
|         q31_t     value = *__SIMD32(pV)++; | ||||
|         v1 = __SXTB16(__ROR(value, 8)); | ||||
|         v2 = __SXTB16(value); | ||||
| #ifndef ARM_MATH_BIG_ENDIAN | ||||
|  | ||||
|         vo2 = __PKHTB(v1, v2, 16); | ||||
|         vo1 = __PKHBT(v2, v1, 16); | ||||
|  | ||||
| #else | ||||
|  | ||||
|         vo1 = __PKHTB(v1, v2, 16); | ||||
|         vo2 = __PKHBT(v2, v1, 16); | ||||
|  | ||||
| #endif | ||||
|  | ||||
|         in = *__SIMD32(pCnt); | ||||
|         *__SIMD32(pCnt)++ = __QADD16(vo1, in); | ||||
|  | ||||
|         in = *__SIMD32(pCnt); | ||||
|         *__SIMD32(pCnt)++ = __QADD16(vo2, in); | ||||
|  | ||||
|         cnt--; | ||||
|     } | ||||
|     cnt = length & 0x3; | ||||
|     while (cnt > 0u) | ||||
|     { | ||||
|         *pCnt++ += *pV++; | ||||
|         cnt--; | ||||
|     } | ||||
| } | ||||
|  | ||||
| #endif                          // ARM_MATH_DSP | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup Pooling | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Q7 max pooling function | ||||
|    * @param[in, out]  Im_in       pointer to input tensor | ||||
|    * @param[in]       dim_im_in   input tensor dimention | ||||
|    * @param[in]       ch_im_in    number of input tensor channels | ||||
|    * @param[in]       dim_kernel  filter kernel size | ||||
|    * @param[in]       padding     padding sizes | ||||
|    * @param[in]       stride      convolution stride | ||||
|    * @param[in]       dim_im_out  output tensor dimension | ||||
|    * @param[in,out]   bufferA     pointer to buffer space for input | ||||
|    * @param[in,out]   Im_out      pointer to output tensor | ||||
|    * @return none. | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * bufferA size:  0 | ||||
|    * | ||||
|    * The pooling function is implemented as split x-pooling then | ||||
|    * y-pooling. | ||||
|    * | ||||
|    * This pooling function is input-destructive. Input data is undefined | ||||
|    * after calling this function. | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| void | ||||
| arm_maxpool_q7_HWC(q7_t * Im_in, | ||||
|                    const uint16_t dim_im_in, | ||||
|                    const uint16_t ch_im_in, | ||||
|                    const uint16_t dim_kernel, | ||||
|                    const uint16_t padding, | ||||
|                    const uint16_t stride, const uint16_t dim_im_out, q7_t * bufferA, q7_t * Im_out) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     int16_t   i_x, i_y; | ||||
|  | ||||
|     /* first does the pooling along x axis */ | ||||
|     for (i_y = 0; i_y < dim_im_in; i_y++) | ||||
|     { | ||||
|  | ||||
|         for (i_x = 0; i_x < dim_im_out; i_x++) | ||||
|         { | ||||
|             /* for each output pixel */ | ||||
|             q7_t     *target = Im_in + (i_y * dim_im_in + i_x) * ch_im_in; | ||||
|             q7_t     *win_start; | ||||
|             q7_t     *win_stop; | ||||
|             if (i_x * stride - padding < 0) | ||||
|             { | ||||
|                 win_start = target; | ||||
|             } else | ||||
|             { | ||||
|                 win_start = Im_in + (i_y * dim_im_in + i_x * stride - padding) * ch_im_in; | ||||
|             } | ||||
|  | ||||
|             if (i_x * stride - padding + dim_kernel >= dim_im_in) | ||||
|             { | ||||
|                 win_stop = Im_in + (i_y * dim_im_in + dim_im_in) * ch_im_in; | ||||
|             } else | ||||
|             { | ||||
|                 win_stop = Im_in + (i_y * dim_im_in + i_x * stride - padding + dim_kernel) * ch_im_in; | ||||
|             } | ||||
|  | ||||
|             /* first step is to copy over initial data */ | ||||
|             /* arm_copy_q7(win_start, target, ch_im_in); */ | ||||
|             memmove(target, win_start, ch_im_in); | ||||
|  | ||||
|             /* start the max operation from the second part */ | ||||
|             win_start += ch_im_in; | ||||
|             for (; win_start < win_stop; win_start += ch_im_in) | ||||
|             { | ||||
|                 compare_and_replace_if_larger_q7(target, win_start, ch_im_in); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* then does the pooling along y axis */ | ||||
|     for (i_y = 0; i_y < dim_im_out; i_y++) | ||||
|     { | ||||
|  | ||||
|         /* for each output row */ | ||||
|         q7_t     *target = Im_out + i_y * dim_im_out * ch_im_in; | ||||
|         q7_t     *row_start; | ||||
|         q7_t     *row_end; | ||||
|         /* setting the starting row */ | ||||
|         if (i_y * stride - padding < 0) | ||||
|         { | ||||
|             row_start = Im_in; | ||||
|         } else | ||||
|         { | ||||
|             row_start = Im_in + (i_y * stride - padding) * dim_im_in * ch_im_in; | ||||
|         } | ||||
|         /* setting the stopping row */ | ||||
|         if (i_y * stride - padding + dim_kernel >= dim_im_in) | ||||
|         { | ||||
|             row_end = Im_in + dim_im_in * dim_im_in * ch_im_in; | ||||
|         } else | ||||
|         { | ||||
|             row_end = Im_in + (i_y * stride - padding + dim_kernel) * dim_im_in * ch_im_in; | ||||
|         } | ||||
|  | ||||
|         /* copy over the first row */ | ||||
|         /* arm_copy_q7(row_start, target, dim_im_out * ch_im_in); */ | ||||
|         memmove(target, row_start, dim_im_out * ch_im_in); | ||||
|  | ||||
|         /* move over to next row */ | ||||
|         row_start += ch_im_in * dim_im_in; | ||||
|  | ||||
|         for (; row_start < row_end; row_start += dim_im_in * ch_im_in) | ||||
|         { | ||||
|             compare_and_replace_if_larger_q7(target, row_start, dim_im_out * ch_im_in); | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|  | ||||
|     int16_t   i_ch_in, i_x, i_y; | ||||
|     int16_t   k_x, k_y; | ||||
|  | ||||
|     for (i_ch_in = 0; i_ch_in < ch_im_in; i_ch_in++) | ||||
|     { | ||||
|         for (i_y = 0; i_y < dim_im_out; i_y++) | ||||
|         { | ||||
|             for (i_x = 0; i_x < dim_im_out; i_x++) | ||||
|             { | ||||
|                 int       max = -129; | ||||
|                 for (k_y = i_y * stride - padding; k_y < i_y * stride - padding + dim_kernel; k_y++) | ||||
|                 { | ||||
|                     for (k_x = i_x * stride - padding; k_x < i_x * stride - padding + dim_kernel; k_x++) | ||||
|                     { | ||||
|                         if (k_y >= 0 && k_x >= 0 && k_y < dim_im_in && k_x < dim_im_in) | ||||
|                         { | ||||
|                             if (Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)] > max) | ||||
|                             { | ||||
|                                 max = Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)]; | ||||
|                             } | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i_ch_in + ch_im_in * (i_x + i_y * dim_im_out)] = max; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
| } | ||||
|  | ||||
|   /** | ||||
|    * @brief Q7 average pooling function | ||||
|    * @param[in,out]   Im_in       pointer to input tensor | ||||
|    * @param[in]       dim_im_in   input tensor dimention | ||||
|    * @param[in]       ch_im_in    number of input tensor channels | ||||
|    * @param[in]       dim_kernel  filter kernel size | ||||
|    * @param[in]       padding     padding sizes | ||||
|    * @param[in]       stride      convolution stride | ||||
|    * @param[in]       dim_im_out  output tensor dimension | ||||
|    * @param[in,out]   bufferA     pointer to buffer space for input | ||||
|    * @param[in,out]   Im_out      pointer to output tensor | ||||
|    * @return none. | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    * <b>Buffer size:</b> | ||||
|    * | ||||
|    * bufferA size:  2*dim_im_out*ch_im_in | ||||
|    * | ||||
|    * The pooling function is implemented as split x-pooling then | ||||
|    * y-pooling. | ||||
|    * | ||||
|    * This pooling function is input-destructive. Input data is undefined | ||||
|    * after calling this function. | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| void | ||||
| arm_avepool_q7_HWC(q7_t * Im_in, | ||||
|                    const uint16_t dim_im_in, | ||||
|                    const uint16_t ch_im_in, | ||||
|                    const uint16_t dim_kernel, | ||||
|                    const uint16_t padding, | ||||
|                    const uint16_t stride, const uint16_t dim_im_out, q7_t * bufferA, q7_t * Im_out) | ||||
| { | ||||
|  | ||||
| #if defined (ARM_MATH_DSP) | ||||
|     /* Run the following code for Cortex-M4 and Cortex-M7 */ | ||||
|  | ||||
|     q15_t    *buffer = (q15_t *) bufferA; | ||||
|     int16_t   i_x, i_y; | ||||
|     int16_t   count = 0; | ||||
|  | ||||
|     /* first does the pooling along x axis */ | ||||
|     for (i_y = 0; i_y < dim_im_in; i_y++) | ||||
|     { | ||||
|  | ||||
|         for (i_x = 0; i_x < dim_im_out; i_x++) | ||||
|         { | ||||
|             /* for each output pixel */ | ||||
|             q7_t     *target = Im_in + (i_y * dim_im_in + i_x) * ch_im_in; | ||||
|             q7_t     *win_start; | ||||
|             q7_t     *win_stop; | ||||
|             if (i_x * stride - padding < 0) | ||||
|             { | ||||
|                 win_start = target; | ||||
|             } else | ||||
|             { | ||||
|                 win_start = Im_in + (i_y * dim_im_in + i_x * stride - padding) * ch_im_in; | ||||
|             } | ||||
|  | ||||
|             if (i_x * stride - padding + dim_kernel >= dim_im_in) | ||||
|             { | ||||
|                 win_stop = Im_in + (i_y * dim_im_in + dim_im_in) * ch_im_in; | ||||
|             } else | ||||
|             { | ||||
|                 win_stop = Im_in + (i_y * dim_im_in + i_x * stride - padding + dim_kernel) * ch_im_in; | ||||
|             } | ||||
|  | ||||
|             /* first step is to copy over initial data */ | ||||
|             arm_q7_to_q15_no_shift(win_start, buffer, ch_im_in); | ||||
|             count = 1; | ||||
|  | ||||
|             /* start the max operation from the second part */ | ||||
|             win_start += ch_im_in; | ||||
|             for (; win_start < win_stop; win_start += ch_im_in) | ||||
|             { | ||||
|                 accumulate_q7_to_q15(buffer, win_start, ch_im_in); | ||||
|                 count++; | ||||
|             } | ||||
|             buffer_scale_back_q15_to_q7(buffer, target, ch_im_in, count); | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* then does the pooling along y axis */ | ||||
|     for (i_y = 0; i_y < dim_im_out; i_y++) | ||||
|     { | ||||
|         /* for each output row */ | ||||
|         q7_t     *target = Im_out + i_y * dim_im_out * ch_im_in; | ||||
|         q7_t     *row_start; | ||||
|         q7_t     *row_end; | ||||
|         /* setting the starting row */ | ||||
|         if (i_y * stride - padding < 0) | ||||
|         { | ||||
|             row_start = Im_in; | ||||
|         } else | ||||
|         { | ||||
|             row_start = Im_in + (i_y * stride - padding) * dim_im_in * ch_im_in; | ||||
|         } | ||||
|         /* setting the stopping row */ | ||||
|         if (i_y * stride - padding + dim_kernel >= dim_im_in) | ||||
|         { | ||||
|             row_end = Im_in + dim_im_in * dim_im_in * ch_im_in; | ||||
|         } else | ||||
|         { | ||||
|             row_end = Im_in + (i_y * stride - padding + dim_kernel) * dim_im_in * ch_im_in; | ||||
|         } | ||||
|  | ||||
|         /* copy over the first row */ | ||||
|         arm_q7_to_q15_no_shift(row_start, buffer, dim_im_out * ch_im_in); | ||||
|         count = 1; | ||||
|  | ||||
|         /* move over to next row */ | ||||
|         row_start += ch_im_in * dim_im_in; | ||||
|  | ||||
|         for (; row_start < row_end; row_start += dim_im_in * ch_im_in) | ||||
|         { | ||||
|             accumulate_q7_to_q15(buffer, row_start, dim_im_out * ch_im_in); | ||||
|             count++; | ||||
|         } | ||||
|         buffer_scale_back_q15_to_q7(buffer, target, dim_im_out * ch_im_in, count); | ||||
|     } | ||||
|  | ||||
| #else | ||||
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ | ||||
|  | ||||
|     int16_t   i_ch_in, i_x, i_y; | ||||
|     int16_t   k_x, k_y; | ||||
|  | ||||
|     for (i_ch_in = 0; i_ch_in < ch_im_in; i_ch_in++) | ||||
|     { | ||||
|         for (i_y = 0; i_y < dim_im_out; i_y++) | ||||
|         { | ||||
|             for (i_x = 0; i_x < dim_im_out; i_x++) | ||||
|             { | ||||
|                 int       sum = 0; | ||||
|                 int       count = 0; | ||||
|                 for (k_y = i_y * stride - padding; k_y < i_y * stride - padding + dim_kernel; k_y++) | ||||
|                 { | ||||
|                     for (k_x = i_x * stride - padding; k_x < i_x * stride - padding + dim_kernel; k_x++) | ||||
|                     { | ||||
|                         if (k_y >= 0 && k_x >= 0 && k_y < dim_im_in && k_x < dim_im_in) | ||||
|                         { | ||||
|                             sum += Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)]; | ||||
|                             count++; | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|                 Im_out[i_ch_in + ch_im_in * (i_x + i_y * dim_im_out)] = sum / count; | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
| #endif                          /* ARM_MATH_DSP */ | ||||
|  | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of Pooling group | ||||
|  */ | ||||
							
								
								
									
										120
									
								
								Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q15.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										120
									
								
								Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q15.c
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,120 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_softmax_q15.c | ||||
|  * Description:  Q15 softmax function | ||||
|  * | ||||
|  * $Date:        20. February 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup Softmax | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Q15 softmax function | ||||
|    * @param[in]       vec_in      pointer to input vector | ||||
|    * @param[in]       dim_vec     input vector dimention | ||||
|    * @param[out]      p_out       pointer to output vector | ||||
|    * @return none. | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    *  Here, instead of typical e based softmax, we use | ||||
|    *  2-based softmax, i.e.,: | ||||
|    * | ||||
|    *  y_i = 2^(x_i) / sum(2^x_j) | ||||
|    * | ||||
|    *  The relative output will be different here. | ||||
|    *  But mathematically, the gradient will be the same | ||||
|    *  with a log(2) scaling factor. | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| void arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out) | ||||
| { | ||||
|     q31_t     sum; | ||||
|     int16_t   i; | ||||
|     uint8_t   shift; | ||||
|     q31_t     base; | ||||
|     base = -1 * 0x100000; | ||||
|     for (i = 0; i < dim_vec; i++) | ||||
|     { | ||||
|         if (vec_in[i] > base) | ||||
|         { | ||||
|             base = vec_in[i]; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* we ignore really small values   | ||||
|      * anyway, they will be 0 after shrinking | ||||
|      * to q15_t | ||||
|      */ | ||||
|     base = base - 16; | ||||
|  | ||||
|     sum = 0; | ||||
|  | ||||
|     for (i = 0; i < dim_vec; i++) | ||||
|     { | ||||
|         if (vec_in[i] > base) | ||||
|         { | ||||
|             shift = (uint8_t)__USAT(vec_in[i] - base, 5); | ||||
|             sum += 0x1 << shift; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* This is effectively (0x1 << 32) / sum */ | ||||
|     int64_t div_base = 0x100000000LL; | ||||
|     int output_base = (int32_t)(div_base / sum); | ||||
|  | ||||
|     /* Final confidence will be output_base >> ( 17 - (vec_in[i] - base) ) | ||||
|      * so 32768 (0x1<<15) -> 100% confidence when sum = 0x1 << 16, output_base = 0x1 << 16 | ||||
|      * and vec_in[i]-base = 16 | ||||
|      */ | ||||
|     for (i = 0; i < dim_vec; i++) | ||||
|     { | ||||
|         if (vec_in[i] > base)  | ||||
|         { | ||||
|             /* Here minimum value of 17+base-vec[i] will be 1 */ | ||||
|             shift = (uint8_t)__USAT(17+base-vec_in[i], 5); | ||||
|             p_out[i] = (q15_t) __SSAT((output_base >> shift), 16); | ||||
|         } else | ||||
|         { | ||||
|             p_out[i] = 0; | ||||
|         } | ||||
|     } | ||||
|  | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of Softmax group | ||||
|  */ | ||||
							
								
								
									
										121
									
								
								Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										121
									
								
								Drivers/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,121 @@ | ||||
| /* | ||||
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. | ||||
|  * | ||||
|  * SPDX-License-Identifier: Apache-2.0 | ||||
|  * | ||||
|  * Licensed under the Apache License, Version 2.0 (the License); you may | ||||
|  * not use this file except in compliance with the License. | ||||
|  * You may obtain a copy of the License at | ||||
|  * | ||||
|  * www.apache.org/licenses/LICENSE-2.0 | ||||
|  * | ||||
|  * Unless required by applicable law or agreed to in writing, software | ||||
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT | ||||
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
|  * See the License for the specific language governing permissions and | ||||
|  * limitations under the License. | ||||
|  */ | ||||
|  | ||||
| /* ---------------------------------------------------------------------- | ||||
|  * Project:      CMSIS NN Library | ||||
|  * Title:        arm_softmax_q7.c | ||||
|  * Description:  Q7 softmax function | ||||
|  * | ||||
|  * $Date:        20. February 2018 | ||||
|  * $Revision:    V.1.0.0 | ||||
|  * | ||||
|  * Target Processor:  Cortex-M cores | ||||
|  * | ||||
|  * -------------------------------------------------------------------- */ | ||||
|  | ||||
| #include "arm_math.h" | ||||
| #include "arm_nnfunctions.h" | ||||
|  | ||||
| /** | ||||
|  *  @ingroup groupNN | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * @addtogroup Softmax | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|   /** | ||||
|    * @brief Q7 softmax function | ||||
|    * @param[in]       vec_in      pointer to input vector | ||||
|    * @param[in]       dim_vec     input vector dimention | ||||
|    * @param[out]      p_out       pointer to output vector | ||||
|    * @return none. | ||||
|    * | ||||
|    * @details | ||||
|    * | ||||
|    *  Here, instead of typical natural logarithm e based softmax, we use | ||||
|    *  2-based softmax here, i.e.,: | ||||
|    *  | ||||
|    *  y_i = 2^(x_i) / sum(2^x_j) | ||||
|    * | ||||
|    *  The relative output will be different here. | ||||
|    *  But mathematically, the gradient will be the same | ||||
|    *  with a log(2) scaling factor. | ||||
|    * | ||||
|    */ | ||||
|  | ||||
| void arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out) | ||||
| { | ||||
|     q31_t     sum; | ||||
|     int16_t   i; | ||||
|     uint8_t   shift; | ||||
|     q15_t     base; | ||||
|     base = -257; | ||||
|  | ||||
|     /* We first search for the maximum */ | ||||
|     for (i = 0; i < dim_vec; i++) | ||||
|     { | ||||
|         if (vec_in[i] > base) | ||||
|         { | ||||
|             base = vec_in[i]; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /*  | ||||
|      * So the base is set to max-8, meaning  | ||||
|      * that we ignore really small values.  | ||||
|      * anyway, they will be 0 after shrinking to q7_t. | ||||
|      */ | ||||
|     base = base - 8; | ||||
|  | ||||
|     sum = 0; | ||||
|  | ||||
|     for (i = 0; i < dim_vec; i++) | ||||
|     { | ||||
|         if (vec_in[i] > base)  | ||||
|         { | ||||
|             shift = (uint8_t)__USAT(vec_in[i] - base, 5); | ||||
|             sum += 0x1 << shift; | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     /* This is effectively (0x1 << 20) / sum */ | ||||
|     int output_base = 0x100000 / sum; | ||||
|  | ||||
|     /*  | ||||
|      * Final confidence will be output_base >> ( 13 - (vec_in[i] - base) ) | ||||
|      * so 128 (0x1<<7) -> 100% confidence when sum = 0x1 << 8, output_base = 0x1 << 12  | ||||
|      * and vec_in[i]-base = 8 | ||||
|      */ | ||||
|     for (i = 0; i < dim_vec; i++)  | ||||
|     { | ||||
|         if (vec_in[i] > base)  | ||||
|         { | ||||
|             /* Here minimum value of 13+base-vec_in[i] will be 5 */ | ||||
|             shift = (uint8_t)__USAT(13+base-vec_in[i], 5); | ||||
|             p_out[i] = (q7_t) __SSAT((output_base >> shift), 8); | ||||
|         } else { | ||||
|             p_out[i] = 0; | ||||
|         } | ||||
|     } | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * @} end of Softmax group | ||||
|  */ | ||||
		Reference in New Issue
	
	Block a user