686 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			VHDL
		
	
	
	
	
	
			
		
		
	
	
			686 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			VHDL
		
	
	
	
	
	
| -- #################################################################################################
 | |
| -- # << NEORV32 - Default Processor Testbench >>                                                   #
 | |
| -- # ********************************************************************************************* #
 | |
| -- # The processor is configured to use a maximum of functional units (for testing purpose).       #
 | |
| -- # Use the "User Configuration" section to configure the testbench according to your needs.      #
 | |
| -- # See NEORV32 data sheet for more information.                                                  #
 | |
| -- # ********************************************************************************************* #
 | |
| -- # BSD 3-Clause License                                                                          #
 | |
| -- #                                                                                               #
 | |
| -- # Copyright (c) 2021, Stephan Nolting. All rights reserved.                                     #
 | |
| -- #                                                                                               #
 | |
| -- # Redistribution and use in source and binary forms, with or without modification, are          #
 | |
| -- # permitted provided that the following conditions are met:                                     #
 | |
| -- #                                                                                               #
 | |
| -- # 1. Redistributions of source code must retain the above copyright notice, this list of        #
 | |
| -- #    conditions and the following disclaimer.                                                   #
 | |
| -- #                                                                                               #
 | |
| -- # 2. Redistributions in binary form must reproduce the above copyright notice, this list of     #
 | |
| -- #    conditions and the following disclaimer in the documentation and/or other materials        #
 | |
| -- #    provided with the distribution.                                                            #
 | |
| -- #                                                                                               #
 | |
| -- # 3. Neither the name of the copyright holder nor the names of its contributors may be used to  #
 | |
| -- #    endorse or promote products derived from this software without specific prior written      #
 | |
| -- #    permission.                                                                                #
 | |
| -- #                                                                                               #
 | |
| -- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS   #
 | |
| -- # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF               #
 | |
| -- # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE    #
 | |
| -- # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,     #
 | |
| -- # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE #
 | |
| -- # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED    #
 | |
| -- # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING     #
 | |
| -- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED  #
 | |
| -- # OF THE POSSIBILITY OF SUCH DAMAGE.                                                            #
 | |
| -- # ********************************************************************************************* #
 | |
| -- # The NEORV32 Processor - https://github.com/stnolting/neorv32              (c) Stephan Nolting #
 | |
| -- #################################################################################################
 | |
| 
 | |
| library vunit_lib;
 | |
| context vunit_lib.vunit_context;
 | |
| context vunit_lib.com_context;
 | |
| context vunit_lib.vc_context;
 | |
| 
 | |
| library ieee;
 | |
| use ieee.std_logic_1164.all;
 | |
| use ieee.numeric_std.all;
 | |
| use ieee.math_real.all;
 | |
| 
 | |
| library neorv32;
 | |
| use neorv32.neorv32_package.all;
 | |
| use neorv32.neorv32_application_image.all; -- this file is generated by the image generator
 | |
| use std.textio.all;
 | |
| 
 | |
| library osvvm;
 | |
| use osvvm.RandomPkg.all;
 | |
| 
 | |
| use work.uart_rx_pkg.all;
 | |
| 
 | |
| entity neorv32_tb is
 | |
|   generic (runner_cfg : string := runner_cfg_default;
 | |
|            ci_mode : boolean := false);
 | |
| end neorv32_tb;
 | |
| 
 | |
| architecture neorv32_tb_rtl of neorv32_tb is
 | |
| 
 | |
|   -- User Configuration ---------------------------------------------------------------------
 | |
|   -- -------------------------------------------------------------------------------------------
 | |
|   -- general --
 | |
|   constant ext_imem_c              : boolean := false; -- false: use and boot from proc-internal IMEM, true: use and boot from external (initialized) simulated IMEM (ext. mem A)
 | |
|   constant ext_dmem_c              : boolean := false; -- false: use proc-internal DMEM, true: use external simulated DMEM (ext. mem B)
 | |
|   constant imem_size_c             : natural := 16*1024; -- size in bytes of processor-internal IMEM / external mem A
 | |
|   constant dmem_size_c             : natural := 8*1024; -- size in bytes of processor-internal DMEM / external mem B
 | |
|   constant f_clock_c               : natural := 100000000; -- main clock in Hz
 | |
|   constant baud0_rate_c            : natural := 19200; -- simulation UART0 (primary UART) baud rate
 | |
|   constant baud1_rate_c            : natural := 19200; -- simulation UART1 (secondary UART) baud rate
 | |
|   -- simulated external Wishbone memory A (can be used as external IMEM) --
 | |
|   constant ext_mem_a_base_addr_c   : std_ulogic_vector(31 downto 0) := x"00000000"; -- wishbone memory base address (external IMEM base)
 | |
|   constant ext_mem_a_size_c        : natural := imem_size_c; -- wishbone memory size in bytes
 | |
|   constant ext_mem_a_latency_c     : natural := 8; -- latency in clock cycles (min 1, max 255), plus 1 cycle initial delay
 | |
|   -- simulated external Wishbone memory B (can be used as external DMEM) --
 | |
|   constant ext_mem_b_base_addr_c   : std_ulogic_vector(31 downto 0) := x"80000000"; -- wishbone memory base address (external DMEM base)
 | |
|   constant ext_mem_b_size_c        : natural := dmem_size_c; -- wishbone memory size in bytes
 | |
|   constant ext_mem_b_latency_c     : natural := 8; -- latency in clock cycles (min 1, max 255), plus 1 cycle initial delay
 | |
|   -- simulated external Wishbone memory C (can be used to simulate external IO access) --
 | |
|   constant ext_mem_c_base_addr_c   : std_ulogic_vector(31 downto 0) := x"F0000000"; -- wishbone memory base address (default begin of EXTERNAL IO area)
 | |
|   constant ext_mem_c_size_c        : natural := 64; -- wishbone memory size in bytes
 | |
|   constant ext_mem_c_latency_c     : natural := 3; -- latency in clock cycles (min 1, max 255), plus 1 cycle initial delay
 | |
|   -- simulation interrupt trigger --
 | |
|   constant irq_trigger_base_addr_c : std_ulogic_vector(31 downto 0) := x"FF000000";
 | |
|   -- -------------------------------------------------------------------------------------------
 | |
| 
 | |
|   -- internals - hands off! --
 | |
|   constant int_imem_c       : boolean := not ext_imem_c;
 | |
|   constant int_dmem_c       : boolean := not ext_dmem_c;
 | |
|   constant uart0_baud_val_c : real := real(f_clock_c) / real(baud0_rate_c);
 | |
|   constant uart1_baud_val_c : real := real(f_clock_c) / real(baud1_rate_c);
 | |
|   constant t_clock_c        : time := (1 sec) / f_clock_c;
 | |
| 
 | |
|   -- generators --
 | |
|   signal clk_gen, rst_gen : std_ulogic := '0';
 | |
| 
 | |
|   -- uart --
 | |
|   signal uart0_txd : std_ulogic; -- local loop-back
 | |
|   signal uart0_cts : std_ulogic; -- local loop-back
 | |
|   signal uart1_txd : std_ulogic; -- local loop-back
 | |
|   signal uart1_cts : std_ulogic; -- local loop-back
 | |
| 
 | |
|   -- gpio --
 | |
|   signal gpio : std_ulogic_vector(63 downto 0);
 | |
| 
 | |
|   -- twi --
 | |
|   signal twi_scl, twi_sda : std_logic;
 | |
| 
 | |
|   -- spi --
 | |
|   signal spi_data : std_ulogic;
 | |
| 
 | |
|   -- irq --
 | |
|   signal msi_ring, mei_ring : std_ulogic;
 | |
| 
 | |
|   -- Wishbone bus --
 | |
|   type wishbone_t is record
 | |
|     addr  : std_ulogic_vector(31 downto 0); -- address
 | |
|     wdata : std_ulogic_vector(31 downto 0); -- master write data
 | |
|     rdata : std_ulogic_vector(31 downto 0); -- master read data
 | |
|     we    : std_ulogic; -- write enable
 | |
|     sel   : std_ulogic_vector(03 downto 0); -- byte enable
 | |
|     stb   : std_ulogic; -- strobe
 | |
|     cyc   : std_ulogic; -- valid cycle
 | |
|     ack   : std_ulogic; -- transfer acknowledge
 | |
|     err   : std_ulogic; -- transfer error
 | |
|     tag   : std_ulogic_vector(02 downto 0); -- request tag
 | |
|     lock  : std_ulogic; -- exclusive access request
 | |
|   end record;
 | |
|   signal wb_cpu, wb_mem_a, wb_mem_b, wb_mem_c, wb_irq : wishbone_t;
 | |
| 
 | |
|   -- Wishbone access latency type --
 | |
|   type ext_mem_read_latency_t is array (0 to 255) of std_ulogic_vector(31 downto 0);
 | |
| 
 | |
|   -- exclusive access / reservation --
 | |
|   signal ext_mem_c_atomic_reservation : std_ulogic := '0';
 | |
| 
 | |
|   -- simulated external memory c (IO) --
 | |
|   signal ext_ram_c : mem32_t(0 to ext_mem_c_size_c/4-1); -- uninitialized, used to simulate external IO
 | |
| 
 | |
|   -- simulated external memory bus feedback type --
 | |
|   type ext_mem_t is record
 | |
|     rdata  : ext_mem_read_latency_t;
 | |
|     acc_en : std_ulogic;
 | |
|     ack    : std_ulogic_vector(ext_mem_a_latency_c-1 downto 0);
 | |
|   end record;
 | |
|   signal ext_mem_a, ext_mem_b, ext_mem_c : ext_mem_t;
 | |
| 
 | |
|   -- stream link interface - local echo --
 | |
|   signal slink_dat : sdata_8x32_t;
 | |
|   signal slink_val : std_ulogic_vector(7 downto 0);
 | |
|   signal slink_rdy : std_ulogic_vector(7 downto 0);
 | |
| 
 | |
|   signal slink_transmitter_dat, slink_receiver_dat : sdata_8x32_t;
 | |
|   signal slink_transmitter_val, slink_receiver_val : std_ulogic_vector(7 downto 0);
 | |
|   signal slink_transmitter_rdy, slink_receiver_rdy : std_ulogic_vector(7 downto 0);
 | |
| 
 | |
|   constant uart0_rx_logger : logger_t := get_logger("UART0.RX");
 | |
|   constant uart1_rx_logger : logger_t := get_logger("UART1.RX");
 | |
|   constant uart0_rx_handle : uart_rx_t := new_uart_rx(uart0_baud_val_c, uart0_rx_logger);
 | |
|   constant uart1_rx_handle : uart_rx_t := new_uart_rx(uart1_baud_val_c, uart1_rx_logger);
 | |
| 
 | |
|   type axi_stream_master_vec_t is array(integer range <>) of axi_stream_master_t;
 | |
|   type axi_stream_slave_vec_t is array(integer range <>) of axi_stream_slave_t;
 | |
| 
 | |
|   impure function init_slink_transmitters return axi_stream_master_vec_t is
 | |
|     variable result : axi_stream_master_vec_t(slink_transmitter_val'range);
 | |
|   begin
 | |
|     for idx in result'range loop
 | |
|       result(idx) := new_axi_stream_master(
 | |
|         data_length => slink_transmitter_dat(idx)'length,
 | |
|         stall_config => new_stall_config(0.05, 1, 10)
 | |
|       );
 | |
|     end loop;
 | |
| 
 | |
|     return result;
 | |
|   end;
 | |
| 
 | |
|   impure function init_slink_receivers return axi_stream_slave_vec_t is
 | |
|     variable result : axi_stream_slave_vec_t(slink_receiver_val'range);
 | |
|   begin
 | |
|     for idx in result'range loop
 | |
|       result(idx) := new_axi_stream_slave(
 | |
|         data_length => slink_receiver_dat(idx)'length,
 | |
|         stall_config => new_stall_config(0.05, 1, 10)
 | |
|       );
 | |
|     end loop;
 | |
| 
 | |
|     return result;
 | |
|   end;
 | |
| 
 | |
|   constant slink_transmitters : axi_stream_master_vec_t := init_slink_transmitters;
 | |
|   constant slink_receivers : axi_stream_slave_vec_t := init_slink_receivers;
 | |
| 
 | |
| begin
 | |
|   test_runner : process
 | |
|     variable msg : msg_t;
 | |
|     variable rnd : RandomPType;
 | |
|     variable value : std_logic_vector(slink_transmitter_dat(0)'range);
 | |
|   begin
 | |
|     test_runner_setup(runner, runner_cfg);
 | |
| 
 | |
|     rnd.InitSeed(test_runner'path_name);
 | |
| 
 | |
|     -- Show passing checks for UART0 on the display (stdout)
 | |
|     show(uart0_rx_logger, display_handler, pass);
 | |
|     show(uart1_rx_logger, display_handler, pass);
 | |
| 
 | |
|     if ci_mode then
 | |
|       check_uart(net, uart0_rx_handle, nul & nul);
 | |
|     else
 | |
|       check_uart(net, uart0_rx_handle, "Blinking LED demo program" & cr & lf);
 | |
|     end if;
 | |
| 
 | |
|     if ci_mode then
 | |
|       -- No need to send the full expectation in one big chunk
 | |
|       check_uart(net, uart1_rx_handle, nul & nul);
 | |
|       check_uart(net, uart1_rx_handle, "0/46" & cr & lf);
 | |
|     end if;
 | |
| 
 | |
|     -- Apply some random data on each SLINK inputs and expect it to
 | |
|     -- be echoed by the CPU. No blocking. Let the SLINK transmitters
 | |
|     -- and receivers do this work in parallel.
 | |
|     for idx in slink_transmitters'range loop
 | |
|       for iter in 1 to 100 loop
 | |
|         value := rnd.RandSlv(value'length);
 | |
| 
 | |
|         -- SLINK is AXI Stream compatible so the SLINK transmitters and
 | |
|         -- and receivers are AXI Stream master and slave verification components (VCs).
 | |
|         -- The full-featured AXI Stream verification component interface (VCI) is used
 | |
|         -- but the AXI stream VCs also implements the basic stream VCI which also works
 | |
|         -- for simple transactions like these. To use that interface for pushing data
 | |
|         -- the AXI Steam VC must be "cast" to a basic stream VC using "as_stream"
 | |
|         --
 | |
|         -- push_stream(net, as_stream(slink_transmitters(idx)), value);
 | |
| 
 | |
|         push_axi_stream(net, slink_transmitters(idx), value);
 | |
|         check_axi_stream(net, slink_receivers(idx), value, blocking => false);
 | |
|       end loop;
 | |
|     end loop;
 | |
| 
 | |
|     -- Wait until all expected data has been received
 | |
|     --
 | |
|     -- wait_until_idle can take the VC actor as argument but
 | |
|     -- the more abstract view is that wait_until_idle is part
 | |
|     -- of the sync VCI and to use it a VC must be cast
 | |
|     -- to a sync VC
 | |
|     wait_until_idle(net, as_sync(uart0_rx_handle));
 | |
|     wait_until_idle(net, as_sync(uart1_rx_handle));
 | |
|     for idx in slink_receivers'range loop
 | |
|       wait_until_idle(net, as_sync(slink_receivers(idx)));
 | |
|     end loop;
 | |
| 
 | |
|     -- Wait a bit more if some extra unexpected data is produced. If so,
 | |
|     -- uart_rx will fail
 | |
|     wait for (20 * (1e9 / baud0_rate_c)) * ns;
 | |
| 
 | |
|     test_runner_cleanup(runner);
 | |
|   end process;
 | |
| 
 | |
|   -- In case we get stuck waiting there is a watchdog timeout to terminate and fail the
 | |
|   -- testbench
 | |
|   test_runner_watchdog(runner, 50 ms);
 | |
| 
 | |
|   -- Clock/Reset Generator ------------------------------------------------------------------
 | |
|   -- -------------------------------------------------------------------------------------------
 | |
|   clk_gen <= not clk_gen after (t_clock_c/2);
 | |
|   rst_gen <= '0', '1' after 60*(t_clock_c/2);
 | |
| 
 | |
| 
 | |
|   -- The Core of the Problem ----------------------------------------------------------------
 | |
|   -- -------------------------------------------------------------------------------------------
 | |
|   neorv32_top_inst: neorv32_top
 | |
|   generic map (
 | |
|     -- General --
 | |
|     CLOCK_FREQUENCY              => f_clock_c,     -- clock frequency of clk_i in Hz
 | |
|     HW_THREAD_ID                 => 0,             -- hardware thread id (hartid) (32-bit)
 | |
|     INT_BOOTLOADER_EN            => false,         -- boot configuration: true = boot explicit bootloader; false = boot from int/ext (I)MEM
 | |
|     -- On-Chip Debugger (OCD) --
 | |
|     ON_CHIP_DEBUGGER_EN          => true,          -- implement on-chip debugger
 | |
|     -- RISC-V CPU Extensions --
 | |
|     CPU_EXTENSION_RISCV_A        => true,          -- implement atomic extension?
 | |
|     CPU_EXTENSION_RISCV_B        => true,          -- implement bit-manipulation extension?
 | |
|     CPU_EXTENSION_RISCV_C        => true,          -- implement compressed extension?
 | |
|     CPU_EXTENSION_RISCV_E        => false,         -- implement embedded RF extension?
 | |
|     CPU_EXTENSION_RISCV_M        => true,          -- implement muld/div extension?
 | |
|     CPU_EXTENSION_RISCV_U        => true,          -- implement user mode extension?
 | |
|     CPU_EXTENSION_RISCV_Zfinx    => true,          -- implement 32-bit floating-point extension (using INT reg!)
 | |
|     CPU_EXTENSION_RISCV_Zicsr    => true,          -- implement CSR system?
 | |
|     CPU_EXTENSION_RISCV_Zicntr   => true,          -- implement base counters?
 | |
|     CPU_EXTENSION_RISCV_Zihpm    => true,          -- implement hardware performance monitors?
 | |
|     CPU_EXTENSION_RISCV_Zifencei => true,          -- implement instruction stream sync.?
 | |
|     -- Extension Options --
 | |
|     FAST_MUL_EN                  => false,         -- use DSPs for M extension's multiplier
 | |
|     FAST_SHIFT_EN                => false,         -- use barrel shifter for shift operations
 | |
|     CPU_CNT_WIDTH                => 64,            -- total width of CPU cycle and instret counters (0..64)
 | |
|     -- Physical Memory Protection (PMP) --
 | |
|     PMP_NUM_REGIONS              => 8,             -- number of regions (0..64)
 | |
|     PMP_MIN_GRANULARITY          => 64*1024,       -- minimal region granularity in bytes, has to be a power of 2, min 8 bytes
 | |
|     -- Hardware Performance Monitors (HPM) --
 | |
|     HPM_NUM_CNTS                 => 12,            -- number of implemented HPM counters (0..29)
 | |
|     HPM_CNT_WIDTH                => 40,            -- total size of HPM counters (0..64)
 | |
|     -- Internal Instruction memory --
 | |
|     MEM_INT_IMEM_EN              => int_imem_c ,   -- implement processor-internal instruction memory
 | |
|     MEM_INT_IMEM_SIZE            => imem_size_c,   -- size of processor-internal instruction memory in bytes
 | |
|     -- Internal Data memory --
 | |
|     MEM_INT_DMEM_EN              => int_dmem_c,    -- implement processor-internal data memory
 | |
|     MEM_INT_DMEM_SIZE            => dmem_size_c,   -- size of processor-internal data memory in bytes
 | |
|     -- Internal Cache memory --
 | |
|     ICACHE_EN                    => true,          -- implement instruction cache
 | |
|     ICACHE_NUM_BLOCKS            => 8,             -- i-cache: number of blocks (min 2), has to be a power of 2
 | |
|     ICACHE_BLOCK_SIZE            => 64,            -- i-cache: block size in bytes (min 4), has to be a power of 2
 | |
|     ICACHE_ASSOCIATIVITY         => 2,             -- i-cache: associativity / number of sets (1=direct_mapped), has to be a power of 2
 | |
|     -- External memory interface --
 | |
|     MEM_EXT_EN                   => true,          -- implement external memory bus interface?
 | |
|     MEM_EXT_TIMEOUT              => 256,           -- cycles after a pending bus access auto-terminates (0 = disabled)
 | |
|     -- Stream link interface --
 | |
|     SLINK_NUM_TX                 => 8,             -- number of TX links (0..8)
 | |
|     SLINK_NUM_RX                 => 8,             -- number of TX links (0..8)
 | |
|     SLINK_TX_FIFO                => 4,             -- TX fifo depth, has to be a power of two
 | |
|     SLINK_RX_FIFO                => 1,             -- RX fifo depth, has to be a power of two
 | |
|     -- External Interrupts Controller (XIRQ) --
 | |
|     XIRQ_NUM_CH                  => 32,            -- number of external IRQ channels (0..32)
 | |
|     XIRQ_TRIGGER_TYPE            => (others => '1'), -- trigger type: 0=level, 1=edge
 | |
|     XIRQ_TRIGGER_POLARITY        => (others => '1'), -- trigger polarity: 0=low-level/falling-edge, 1=high-level/rising-edge 
 | |
|     -- Processor peripherals --
 | |
|     IO_GPIO_EN                   => true,          -- implement general purpose input/output port unit (GPIO)?
 | |
|     IO_MTIME_EN                  => true,          -- implement machine system timer (MTIME)?
 | |
|     IO_UART0_EN                  => true,          -- implement primary universal asynchronous receiver/transmitter (UART0)?
 | |
|     IO_UART0_RX_FIFO             => 32,            -- RX fifo depth, has to be a power of two, min 1
 | |
|     IO_UART0_TX_FIFO             => 32,            -- TX fifo depth, has to be a power of two, min 1
 | |
|     IO_UART1_EN                  => true,          -- implement secondary universal asynchronous receiver/transmitter (UART1)?
 | |
|     IO_UART1_RX_FIFO             => 1,             -- RX fifo depth, has to be a power of two, min 1
 | |
|     IO_UART1_TX_FIFO             => 1,             -- TX fifo depth, has to be a power of two, min 1
 | |
|     IO_SPI_EN                    => true,          -- implement serial peripheral interface (SPI)?
 | |
|     IO_TWI_EN                    => true,          -- implement two-wire interface (TWI)?
 | |
|     IO_PWM_NUM_CH                => 30,            -- number of PWM channels to implement (0..60); 0 = disabled
 | |
|     IO_WDT_EN                    => true,          -- implement watch dog timer (WDT)?
 | |
|     IO_TRNG_EN                   => false,         -- trng cannot be simulated
 | |
|     IO_CFS_EN                    => true,          -- implement custom functions subsystem (CFS)?
 | |
|     IO_CFS_CONFIG                => (others => '0'), -- custom CFS configuration generic
 | |
|     IO_CFS_IN_SIZE               => 32,            -- size of CFS input conduit in bits
 | |
|     IO_CFS_OUT_SIZE              => 32,            -- size of CFS output conduit in bits
 | |
|     IO_NEOLED_EN                 => true,          -- implement NeoPixel-compatible smart LED interface (NEOLED)?
 | |
|     IO_NEOLED_TX_FIFO            => 8,             -- NEOLED TX FIFO depth, 1..32k, has to be a power of two
 | |
|     IO_GPTMR_EN                  => true           -- implement general purpose timer (GPTMR)?
 | |
|   )
 | |
|   port map (
 | |
|     -- Global control --
 | |
|     clk_i          => clk_gen,         -- global clock, rising edge
 | |
|     rstn_i         => rst_gen,         -- global reset, low-active, async
 | |
|     -- JTAG on-chip debugger interface (available if ON_CHIP_DEBUGGER_EN = true) --
 | |
|     jtag_trst_i    => '1',             -- low-active TAP reset (optional)
 | |
|     jtag_tck_i     => '0',             -- serial clock
 | |
|     jtag_tdi_i     => '0',             -- serial data input
 | |
|     jtag_tdo_o     => open,            -- serial data output
 | |
|     jtag_tms_i     => '0',             -- mode select
 | |
|     -- Wishbone bus interface (available if MEM_EXT_EN = true) --
 | |
|     wb_tag_o       => wb_cpu.tag,      -- request tag
 | |
|     wb_adr_o       => wb_cpu.addr,     -- address
 | |
|     wb_dat_i       => wb_cpu.rdata,    -- read data
 | |
|     wb_dat_o       => wb_cpu.wdata,    -- write data
 | |
|     wb_we_o        => wb_cpu.we,       -- read/write
 | |
|     wb_sel_o       => wb_cpu.sel,      -- byte enable
 | |
|     wb_stb_o       => wb_cpu.stb,      -- strobe
 | |
|     wb_cyc_o       => wb_cpu.cyc,      -- valid cycle
 | |
|     wb_lock_o      => wb_cpu.lock,     -- exclusive access request
 | |
|     wb_ack_i       => wb_cpu.ack,      -- transfer acknowledge
 | |
|     wb_err_i       => wb_cpu.err,      -- transfer error
 | |
|     -- Advanced memory control signals (available if MEM_EXT_EN = true) --
 | |
|     fence_o        => open,            -- indicates an executed FENCE operation
 | |
|     fencei_o       => open,            -- indicates an executed FENCEI operation
 | |
|     -- TX stream interfaces (available if SLINK_NUM_TX > 0) --
 | |
|     slink_tx_dat_o => slink_dat,       -- output data
 | |
|     slink_tx_val_o => slink_val,       -- valid output
 | |
|     slink_tx_rdy_i => slink_rdy,       -- ready to send
 | |
|     -- RX stream interfaces (available if SLINK_NUM_RX > 0) --
 | |
|     slink_rx_dat_i => slink_dat,       -- input data
 | |
|     slink_rx_val_i => slink_val,       -- valid input
 | |
|     slink_rx_rdy_o => slink_rdy,       -- ready to receive
 | |
|     -- GPIO (available if IO_GPIO_EN = true) --
 | |
|     gpio_o         => gpio,            -- parallel output
 | |
|     gpio_i         => gpio,            -- parallel input
 | |
|     -- primary UART0 (available if IO_UART0_EN = true) --
 | |
|     uart0_txd_o    => uart0_txd,       -- UART0 send data
 | |
|     uart0_rxd_i    => uart0_txd,       -- UART0 receive data
 | |
|     uart0_rts_o    => uart0_cts,       -- hw flow control: UART0.RX ready to receive ("RTR"), low-active, optional
 | |
|     uart0_cts_i    => uart0_cts,       -- hw flow control: UART0.TX allowed to transmit, low-active, optional
 | |
|     -- secondary UART1 (available if IO_UART1_EN = true) --
 | |
|     uart1_txd_o    => uart1_txd,       -- UART1 send data
 | |
|     uart1_rxd_i    => uart1_txd,       -- UART1 receive data
 | |
|     uart1_rts_o    => uart1_cts,       -- hw flow control: UART1.RX ready to receive ("RTR"), low-active, optional
 | |
|     uart1_cts_i    => uart1_cts,       -- hw flow control: UART1.TX allowed to transmit, low-active, optional
 | |
|     -- SPI (available if IO_SPI_EN = true) --
 | |
|     spi_sck_o      => open,            -- SPI serial clock
 | |
|     spi_sdo_o      => spi_data,        -- controller data out, peripheral data in
 | |
|     spi_sdi_i      => spi_data,        -- controller data in, peripheral data out
 | |
|     spi_csn_o      => open,            -- SPI CS
 | |
|     -- TWI (available if IO_TWI_EN = true) --
 | |
|     twi_sda_io     => twi_sda,         -- twi serial data line
 | |
|     twi_scl_io     => twi_scl,         -- twi serial clock line
 | |
|     -- PWM (available if IO_PWM_NUM_CH > 0) --
 | |
|     pwm_o          => open,            -- pwm channels
 | |
|     -- Custom Functions Subsystem IO --
 | |
|     cfs_in_i       => (others => '0'), -- custom CFS inputs
 | |
|     cfs_out_o      => open,            -- custom CFS outputs
 | |
|     -- NeoPixel-compatible smart LED interface (available if IO_NEOLED_EN = true) --
 | |
|     neoled_o       => open,            -- async serial data line
 | |
|     -- System time --
 | |
|     mtime_i        => (others => '0'), -- current system time from ext. MTIME (if IO_MTIME_EN = false)
 | |
|     mtime_o        => open,            -- current system time from int. MTIME (if IO_MTIME_EN = true)
 | |
|     -- External platform interrupts (available if XIRQ_NUM_CH > 0) --
 | |
|     xirq_i         => gpio(31 downto 0), -- IRQ channels
 | |
|     -- CPU Interrupts --
 | |
|     mtime_irq_i    => '0',             -- machine software interrupt, available if IO_MTIME_EN = false
 | |
|     msw_irq_i      => msi_ring,        -- machine software interrupt
 | |
|     mext_irq_i     => mei_ring         -- machine external interrupt
 | |
|   );
 | |
| 
 | |
|   -- TWI termination (pull-ups) --
 | |
|   twi_scl <= 'H';
 | |
|   twi_sda <= 'H';
 | |
| 
 | |
|   uart0_checker: entity work.uart_rx
 | |
|     generic map (uart0_rx_handle)
 | |
|     port map (
 | |
|       clk => clk_gen,
 | |
|       uart_txd => uart0_txd);
 | |
| 
 | |
|   uart1_checker: entity work.uart_rx
 | |
|     generic map (uart1_rx_handle)
 | |
|     port map (
 | |
|       clk => clk_gen,
 | |
|       uart_txd => uart1_txd);
 | |
| 
 | |
|   slink_transmitters_gen: for idx in slink_transmitters'range generate
 | |
|     slink_transmitter : entity vunit_lib.axi_stream_master
 | |
|       generic map(
 | |
|         master => slink_transmitters(idx)
 | |
|       )
 | |
|       port map(
 | |
|         aclk => clk_gen,
 | |
|         tvalid => slink_transmitter_val(idx),
 | |
|         tready => slink_transmitter_rdy(idx),
 | |
|         std_ulogic_vector(tdata) => slink_transmitter_dat(idx)
 | |
|       );
 | |
|   end generate;
 | |
| 
 | |
|   slink_receivers_gen: for idx in slink_receivers'range generate
 | |
|   begin
 | |
|     slink_receiver : entity vunit_lib.axi_stream_slave
 | |
|       generic map(
 | |
|         slave => slink_receivers(idx)
 | |
|       )
 | |
|       port map(
 | |
|         aclk => clk_gen,
 | |
|         tvalid => slink_receiver_val(idx),
 | |
|         tready => slink_receiver_rdy(idx),
 | |
|         tdata => std_logic_vector(slink_receiver_dat(idx))
 | |
|       );
 | |
|   end generate;
 | |
| 
 | |
|   -- TODO: connect these to the CPU SLINK interface once the
 | |
|   -- loopback SW has been implemented
 | |
|   temporary_connection : for idx in slink_transmitters'range generate
 | |
|     slink_receiver_val(idx) <= slink_transmitter_val(idx);
 | |
|     slink_transmitter_rdy(idx) <= slink_receiver_rdy(idx);
 | |
|     slink_receiver_dat(idx) <= slink_transmitter_dat(idx);
 | |
|   end generate;
 | |
| 
 | |
| 
 | |
|   -- Wishbone Fabric ------------------------------------------------------------------------
 | |
|   -- -------------------------------------------------------------------------------------------
 | |
|   -- CPU broadcast signals --
 | |
|   wb_mem_a.addr  <= wb_cpu.addr;
 | |
|   wb_mem_a.wdata <= wb_cpu.wdata;
 | |
|   wb_mem_a.we    <= wb_cpu.we;
 | |
|   wb_mem_a.sel   <= wb_cpu.sel;
 | |
|   wb_mem_a.tag   <= wb_cpu.tag;
 | |
|   wb_mem_a.cyc   <= wb_cpu.cyc;
 | |
|   wb_mem_a.lock  <= wb_cpu.lock;
 | |
| 
 | |
|   wb_mem_b.addr  <= wb_cpu.addr;
 | |
|   wb_mem_b.wdata <= wb_cpu.wdata;
 | |
|   wb_mem_b.we    <= wb_cpu.we;
 | |
|   wb_mem_b.sel   <= wb_cpu.sel;
 | |
|   wb_mem_b.tag   <= wb_cpu.tag;
 | |
|   wb_mem_b.cyc   <= wb_cpu.cyc;
 | |
|   wb_mem_b.lock  <= wb_cpu.lock;
 | |
| 
 | |
|   wb_mem_c.addr  <= wb_cpu.addr;
 | |
|   wb_mem_c.wdata <= wb_cpu.wdata;
 | |
|   wb_mem_c.we    <= wb_cpu.we;
 | |
|   wb_mem_c.sel   <= wb_cpu.sel;
 | |
|   wb_mem_c.tag   <= wb_cpu.tag;
 | |
|   wb_mem_c.cyc   <= wb_cpu.cyc;
 | |
|   wb_mem_c.lock  <= wb_cpu.lock;
 | |
| 
 | |
|   wb_irq.addr    <= wb_cpu.addr;
 | |
|   wb_irq.wdata   <= wb_cpu.wdata;
 | |
|   wb_irq.we      <= wb_cpu.we;
 | |
|   wb_irq.sel     <= wb_cpu.sel;
 | |
|   wb_irq.tag     <= wb_cpu.tag;
 | |
|   wb_irq.cyc     <= wb_cpu.cyc;
 | |
| 
 | |
|   -- CPU read-back signals (no mux here since peripherals have "output gates") --
 | |
|   wb_cpu.rdata <= wb_mem_a.rdata or wb_mem_b.rdata or wb_mem_c.rdata or wb_irq.rdata;
 | |
|   wb_cpu.ack   <= wb_mem_a.ack   or wb_mem_b.ack   or wb_mem_c.ack   or wb_irq.ack;
 | |
|   wb_cpu.err   <= wb_mem_a.err   or wb_mem_b.err   or wb_mem_c.err   or wb_irq.err;
 | |
| 
 | |
|   -- peripheral select via STROBE signal --
 | |
|   wb_mem_a.stb <= wb_cpu.stb when (wb_cpu.addr >= ext_mem_a_base_addr_c) and (wb_cpu.addr < std_ulogic_vector(unsigned(ext_mem_a_base_addr_c) + ext_mem_a_size_c)) else '0';
 | |
|   wb_mem_b.stb <= wb_cpu.stb when (wb_cpu.addr >= ext_mem_b_base_addr_c) and (wb_cpu.addr < std_ulogic_vector(unsigned(ext_mem_b_base_addr_c) + ext_mem_b_size_c)) else '0';
 | |
|   wb_mem_c.stb <= wb_cpu.stb when (wb_cpu.addr >= ext_mem_c_base_addr_c) and (wb_cpu.addr < std_ulogic_vector(unsigned(ext_mem_c_base_addr_c) + ext_mem_c_size_c)) else '0';
 | |
|   wb_irq.stb   <= wb_cpu.stb when (wb_cpu.addr =  irq_trigger_base_addr_c) else '0';
 | |
| 
 | |
| 
 | |
|   -- Wishbone Memory A (simulated external IMEM) --------------------------------------------
 | |
|   -- -------------------------------------------------------------------------------------------
 | |
|   generate_ext_imem:
 | |
|   if ext_imem_c generate
 | |
|     ext_mem_a_access: process(clk_gen)
 | |
|       variable ext_ram_a : mem32_t(0 to ext_mem_a_size_c/4-1) := mem32_init_f(application_init_image, ext_mem_a_size_c/4); -- initialized, used to simulate external IMEM
 | |
|     begin
 | |
|       if rising_edge(clk_gen) then
 | |
|         -- control --
 | |
|         ext_mem_a.ack(0) <= wb_mem_a.cyc and wb_mem_a.stb; -- wishbone acknowledge
 | |
| 
 | |
|         -- write access --
 | |
|         if ((wb_mem_a.cyc and wb_mem_a.stb and wb_mem_a.we) = '1') then -- valid write access
 | |
|           for i in 0 to 3 loop
 | |
|             if (wb_mem_a.sel(i) = '1') then
 | |
|               ext_ram_a(to_integer(unsigned(wb_mem_a.addr(index_size_f(ext_mem_a_size_c/4)+1 downto 2))))(7+i*8 downto 0+i*8) := wb_mem_a.wdata(7+i*8 downto 0+i*8);
 | |
|             end if;
 | |
|           end loop; -- i
 | |
|         end if;
 | |
| 
 | |
|         -- read access --
 | |
|         ext_mem_a.rdata(0) <= ext_ram_a(to_integer(unsigned(wb_mem_a.addr(index_size_f(ext_mem_a_size_c/4)+1 downto 2)))); -- word aligned
 | |
|         -- virtual read and ack latency --
 | |
|         if (ext_mem_a_latency_c > 1) then
 | |
|           for i in 1 to ext_mem_a_latency_c-1 loop
 | |
|             ext_mem_a.rdata(i) <= ext_mem_a.rdata(i-1);
 | |
|             ext_mem_a.ack(i)   <= ext_mem_a.ack(i-1) and wb_mem_a.cyc;
 | |
|           end loop;
 | |
|         end if;
 | |
| 
 | |
|         -- bus output register --
 | |
|         wb_mem_a.err <= '0';
 | |
|         if (ext_mem_a.ack(ext_mem_a_latency_c-1) = '1') and (wb_mem_a.cyc = '1') and (wb_mem_a.ack = '0') then
 | |
|           wb_mem_a.rdata <= ext_mem_a.rdata(ext_mem_a_latency_c-1);
 | |
|           wb_mem_a.ack   <= '1';
 | |
|         else
 | |
|           wb_mem_a.rdata <= (others => '0');
 | |
|           wb_mem_a.ack   <= '0';
 | |
|         end if;
 | |
|       end if;
 | |
|     end process ext_mem_a_access;
 | |
|   end generate;
 | |
| 
 | |
|   generate_ext_imem_false:
 | |
|   if (ext_imem_c = false) generate
 | |
|     wb_mem_a.rdata <= (others => '0');
 | |
|     wb_mem_a.ack   <= '0';
 | |
|     wb_mem_a.err   <= '0';
 | |
|   end generate;
 | |
| 
 | |
| 
 | |
|   -- Wishbone Memory B (simulated external DMEM) --------------------------------------------
 | |
|   -- -------------------------------------------------------------------------------------------
 | |
|   ext_mem_b_access: process(clk_gen)
 | |
|     variable ext_ram_b : mem32_t(0 to ext_mem_b_size_c/4-1) := (others => (others => '0')); -- zero, used to simulate external DMEM
 | |
|   begin
 | |
|     if rising_edge(clk_gen) then
 | |
|       -- control --
 | |
|       ext_mem_b.ack(0) <= wb_mem_b.cyc and wb_mem_b.stb; -- wishbone acknowledge
 | |
| 
 | |
|       -- write access --
 | |
|       if ((wb_mem_b.cyc and wb_mem_b.stb and wb_mem_b.we) = '1') then -- valid write access
 | |
|         for i in 0 to 3 loop
 | |
|           if (wb_mem_b.sel(i) = '1') then
 | |
|             ext_ram_b(to_integer(unsigned(wb_mem_b.addr(index_size_f(ext_mem_b_size_c/4)+1 downto 2))))(7+i*8 downto 0+i*8) := wb_mem_b.wdata(7+i*8 downto 0+i*8);
 | |
|           end if;
 | |
|         end loop; -- i
 | |
|       end if;
 | |
| 
 | |
|       -- read access --
 | |
|       ext_mem_b.rdata(0) <= ext_ram_b(to_integer(unsigned(wb_mem_b.addr(index_size_f(ext_mem_b_size_c/4)+1 downto 2)))); -- word aligned
 | |
|       -- virtual read and ack latency --
 | |
|       if (ext_mem_b_latency_c > 1) then
 | |
|         for i in 1 to ext_mem_b_latency_c-1 loop
 | |
|           ext_mem_b.rdata(i) <= ext_mem_b.rdata(i-1);
 | |
|           ext_mem_b.ack(i)   <= ext_mem_b.ack(i-1) and wb_mem_b.cyc;
 | |
|         end loop;
 | |
|       end if;
 | |
| 
 | |
|       -- bus output register --
 | |
|       wb_mem_b.err <= '0';
 | |
|       if (ext_mem_b.ack(ext_mem_b_latency_c-1) = '1') and (wb_mem_b.cyc = '1') and (wb_mem_b.ack = '0') then
 | |
|         wb_mem_b.rdata <= ext_mem_b.rdata(ext_mem_b_latency_c-1);
 | |
|         wb_mem_b.ack   <= '1';
 | |
|       else
 | |
|         wb_mem_b.rdata <= (others => '0');
 | |
|         wb_mem_b.ack   <= '0';
 | |
|       end if;
 | |
|     end if;
 | |
|   end process ext_mem_b_access;
 | |
| 
 | |
| 
 | |
|   -- Wishbone Memory C (simulated external IO) ----------------------------------------------
 | |
|   -- -------------------------------------------------------------------------------------------
 | |
|   ext_mem_c_access: process(clk_gen)
 | |
|   begin
 | |
|     if rising_edge(clk_gen) then
 | |
|       -- control --
 | |
|       ext_mem_c.ack(0) <= wb_mem_c.cyc and wb_mem_c.stb; -- wishbone acknowledge
 | |
| 
 | |
|       -- write access --
 | |
|       if ((wb_mem_c.cyc and wb_mem_c.stb and wb_mem_c.we) = '1') then -- valid write access
 | |
|         for i in 0 to 3 loop
 | |
|           if (wb_mem_c.sel(i) = '1') then
 | |
|             ext_ram_c(to_integer(unsigned(wb_mem_c.addr(index_size_f(ext_mem_c_size_c/4)+1 downto 2))))(7+i*8 downto 0+i*8) <= wb_mem_c.wdata(7+i*8 downto 0+i*8);
 | |
|           end if;
 | |
|         end loop; -- i
 | |
|       end if;
 | |
| 
 | |
|       -- read access --
 | |
|       ext_mem_c.rdata(0) <= ext_ram_c(to_integer(unsigned(wb_mem_c.addr(index_size_f(ext_mem_c_size_c/4)+1 downto 2)))); -- word aligned
 | |
|       -- virtual read and ack latency --
 | |
|       if (ext_mem_c_latency_c > 1) then
 | |
|         for i in 1 to ext_mem_c_latency_c-1 loop
 | |
|           ext_mem_c.rdata(i) <= ext_mem_c.rdata(i-1);
 | |
|           ext_mem_c.ack(i)   <= ext_mem_c.ack(i-1) and wb_mem_c.cyc;
 | |
|         end loop;
 | |
|       end if;
 | |
| 
 | |
|       -- EXCLUSIVE bus access -----------------------------------------------------
 | |
|       -- -----------------------------------------------------------------------------
 | |
|       -- Since there is only one CPU in this design, the exclusive access reservation in THIS memory CANNOT fail.
 | |
|       -- However, this memory module is used to simulated failing LR/SC accesses.
 | |
|       if ((wb_mem_c.cyc and wb_mem_c.stb) = '1') then -- valid access
 | |
|         ext_mem_c_atomic_reservation <= wb_mem_c.lock; -- make reservation
 | |
|       end if;
 | |
|       -- -----------------------------------------------------------------------------
 | |
| 
 | |
|       -- bus output register --
 | |
|       if (ext_mem_c.ack(ext_mem_c_latency_c-1) = '1') and (wb_mem_c.cyc = '1') and (wb_mem_c.ack = '0') then
 | |
|         wb_mem_c.rdata <= ext_mem_c.rdata(ext_mem_c_latency_c-1);
 | |
|         wb_mem_c.ack   <= '1';
 | |
|         wb_mem_c.err   <= ext_mem_c_atomic_reservation; -- issue a bus error if there is an exclusive access request
 | |
|       else
 | |
|         wb_mem_c.rdata <= (others => '0');
 | |
|         wb_mem_c.ack   <= '0';
 | |
|         wb_mem_c.err   <= '0';
 | |
|       end if;
 | |
|     end if;
 | |
|   end process ext_mem_c_access;
 | |
| 
 | |
| 
 | |
|   -- Wishbone IRQ Triggers ------------------------------------------------------------------
 | |
|   -- -------------------------------------------------------------------------------------------
 | |
|   irq_trigger: process(rst_gen, clk_gen)
 | |
|   begin
 | |
|     if (rst_gen = '0') then
 | |
|       msi_ring <= '0';
 | |
|       mei_ring <= '0';
 | |
|     elsif rising_edge(clk_gen) then
 | |
|       -- bus interface --
 | |
|       wb_irq.rdata <= (others => '0');
 | |
|       wb_irq.ack   <= wb_irq.cyc and wb_irq.stb and wb_irq.we and and_reduce_f(wb_irq.sel);
 | |
|       wb_irq.err   <= '0';
 | |
|       -- trigger RISC-V platform IRQs --
 | |
|       if ((wb_irq.cyc and wb_irq.stb and wb_irq.we and and_reduce_f(wb_irq.sel)) = '1') then
 | |
|         msi_ring <= wb_irq.wdata(03); -- machine software interrupt
 | |
|         mei_ring <= wb_irq.wdata(11); -- machine software interrupt
 | |
|       end if;
 | |
|     end if;
 | |
|   end process irq_trigger;
 | |
| 
 | |
| 
 | |
| end neorv32_tb_rtl;
 |