/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * 
© Copyright (c) 2020 STMicroelectronics.
  * All rights reserved.
  *
  * This software component is licensed by ST under Ultimate Liberty license
  * SLA0044, the "License"; You may not use this file except in compliance with
  * the License. You may obtain a copy of the License at:
  *                             www.st.com/SLA0044
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "app_touchgfx.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include 
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define REFRESH_COUNT        1835
#define SDRAM_TIMEOUT                            ((uint32_t)0xFFFF)
#define SDRAM_MODEREG_BURST_LENGTH_1             ((uint16_t)0x0000)
#define SDRAM_MODEREG_BURST_LENGTH_2             ((uint16_t)0x0001)
#define SDRAM_MODEREG_BURST_LENGTH_4             ((uint16_t)0x0002)
#define SDRAM_MODEREG_BURST_LENGTH_8             ((uint16_t)0x0004)
#define SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL      ((uint16_t)0x0000)
#define SDRAM_MODEREG_BURST_TYPE_INTERLEAVED     ((uint16_t)0x0008)
#define SDRAM_MODEREG_CAS_LATENCY_2              ((uint16_t)0x0020)
#define SDRAM_MODEREG_CAS_LATENCY_3              ((uint16_t)0x0030)
#define SDRAM_MODEREG_OPERATING_MODE_STANDARD    ((uint16_t)0x0000)
#define SDRAM_MODEREG_WRITEBURST_MODE_PROGRAMMED ((uint16_t)0x0000)
#define SDRAM_MODEREG_WRITEBURST_MODE_SINGLE     ((uint16_t)0x0200)
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc3;
CRC_HandleTypeDef hcrc;
DMA2D_HandleTypeDef hdma2d;
I2C_HandleTypeDef hi2c3;
LTDC_HandleTypeDef hltdc;
QSPI_HandleTypeDef hqspi;
RTC_HandleTypeDef hrtc;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim10;
UART_HandleTypeDef huart1;
SDRAM_HandleTypeDef hsdram1;
/* Definitions for TouchGFXTask */
osThreadId_t TouchGFXTaskHandle;
const osThreadAttr_t TouchGFXTask_attributes = {
  .name = "TouchGFXTask",
  .priority = (osPriority_t) osPriorityNormal,
  .stack_size = 4096 * 4
};
/* USER CODE BEGIN PV */
static FMC_SDRAM_CommandTypeDef Command;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MPU_Config(void);
static void MX_GPIO_Init(void);
static void MX_CRC_Init(void);
static void MX_DMA2D_Init(void);
static void MX_FMC_Init(void);
static void MX_I2C3_Init(void);
static void MX_LTDC_Init(void);
static void MX_QUADSPI_Init(void);
static void MX_ADC3_Init(void);
static void MX_RTC_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM10_Init(void);
static void MX_USART1_UART_Init(void);
void TouchGFX_Task(void *argument);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
  /* USER CODE END 1 */
  /* MPU Configuration--------------------------------------------------------*/
  MPU_Config();
  /* Enable I-Cache---------------------------------------------------------*/
  SCB_EnableICache();
  /* Enable D-Cache---------------------------------------------------------*/
  SCB_EnableDCache();
  /* MCU Configuration--------------------------------------------------------*/
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
  /* USER CODE BEGIN Init */
  /* USER CODE END Init */
  /* Configure the system clock */
  SystemClock_Config();
  /* USER CODE BEGIN SysInit */
  /* USER CODE END SysInit */
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_CRC_Init();
  MX_DMA2D_Init();
  MX_FMC_Init();
  MX_I2C3_Init();
  MX_LTDC_Init();
  MX_QUADSPI_Init();
  MX_ADC3_Init();
  MX_RTC_Init();
  MX_TIM1_Init();
  MX_TIM10_Init();
  MX_USART1_UART_Init();
  MX_TouchGFX_Init();
  /* USER CODE BEGIN 2 */
  /* USER CODE END 2 */
  /* Init scheduler */
  osKernelInitialize();
  /* USER CODE BEGIN RTOS_MUTEX */
  /* add mutexes, ... */
  /* USER CODE END RTOS_MUTEX */
  /* USER CODE BEGIN RTOS_SEMAPHORES */
  /* add semaphores, ... */
  /* USER CODE END RTOS_SEMAPHORES */
  /* USER CODE BEGIN RTOS_TIMERS */
  /* start timers, add new ones, ... */
  /* USER CODE END RTOS_TIMERS */
  /* USER CODE BEGIN RTOS_QUEUES */
  /* add queues, ... */
  /* USER CODE END RTOS_QUEUES */
  /* Create the thread(s) */
  /* creation of TouchGFXTask */
  TouchGFXTaskHandle = osThreadNew(TouchGFX_Task, NULL, &TouchGFXTask_attributes);
  /* USER CODE BEGIN RTOS_THREADS */
  /* add threads, ... */
  /* USER CODE END RTOS_THREADS */
  /* USER CODE BEGIN RTOS_EVENTS */
  /* add events, ... */
  /* USER CODE END RTOS_EVENTS */
  /* Start scheduler */
  osKernelStart();
  /* We should never get here as control is now taken by the scheduler */
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}
/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
  /** Configure LSE Drive Capability
  */
  HAL_PWR_EnableBkUpAccess();
  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 25;
  RCC_OscInitStruct.PLL.PLLN = 400;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Activate the Over-Drive mode
  */
  if (HAL_PWREx_EnableOverDrive() != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_6) != HAL_OK)
  {
    Error_Handler();
  }
  PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LTDC|RCC_PERIPHCLK_RTC
                              |RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_I2C3;
  PeriphClkInitStruct.PLLSAI.PLLSAIN = 384;
  PeriphClkInitStruct.PLLSAI.PLLSAIR = 5;
  PeriphClkInitStruct.PLLSAI.PLLSAIQ = 2;
  PeriphClkInitStruct.PLLSAI.PLLSAIP = RCC_PLLSAIP_DIV2;
  PeriphClkInitStruct.PLLSAIDivQ = 1;
  PeriphClkInitStruct.PLLSAIDivR = RCC_PLLSAIDIVR_8;
  PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
  PeriphClkInitStruct.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
  PeriphClkInitStruct.I2c3ClockSelection = RCC_I2C3CLKSOURCE_PCLK1;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
}
/**
  * @brief ADC3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC3_Init(void)
{
  /* USER CODE BEGIN ADC3_Init 0 */
  /* USER CODE END ADC3_Init 0 */
  ADC_ChannelConfTypeDef sConfig = {0};
  /* USER CODE BEGIN ADC3_Init 1 */
  /* USER CODE END ADC3_Init 1 */
  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
  */
  hadc3.Instance = ADC3;
  hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
  hadc3.Init.Resolution = ADC_RESOLUTION_12B;
  hadc3.Init.ScanConvMode = ADC_SCAN_DISABLE;
  hadc3.Init.ContinuousConvMode = DISABLE;
  hadc3.Init.DiscontinuousConvMode = DISABLE;
  hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
  hadc3.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
  hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc3.Init.NbrOfConversion = 1;
  hadc3.Init.DMAContinuousRequests = DISABLE;
  hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc3) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
  */
  sConfig.Channel = ADC_CHANNEL_0;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC3_Init 2 */
  /* USER CODE END ADC3_Init 2 */
}
/**
  * @brief CRC Initialization Function
  * @param None
  * @retval None
  */
static void MX_CRC_Init(void)
{
  /* USER CODE BEGIN CRC_Init 0 */
  /* USER CODE END CRC_Init 0 */
  /* USER CODE BEGIN CRC_Init 1 */
  /* USER CODE END CRC_Init 1 */
  hcrc.Instance = CRC;
  hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE;
  hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE;
  hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
  hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
  hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
  if (HAL_CRC_Init(&hcrc) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN CRC_Init 2 */
  /* USER CODE END CRC_Init 2 */
}
/**
  * @brief DMA2D Initialization Function
  * @param None
  * @retval None
  */
static void MX_DMA2D_Init(void)
{
  /* USER CODE BEGIN DMA2D_Init 0 */
  /* USER CODE END DMA2D_Init 0 */
  /* USER CODE BEGIN DMA2D_Init 1 */
  /* USER CODE END DMA2D_Init 1 */
  hdma2d.Instance = DMA2D;
  hdma2d.Init.Mode = DMA2D_M2M;
  hdma2d.Init.ColorMode = DMA2D_OUTPUT_ARGB8888;
  hdma2d.Init.OutputOffset = 0;
  hdma2d.LayerCfg[1].InputOffset = 0;
  hdma2d.LayerCfg[1].InputColorMode = DMA2D_INPUT_ARGB8888;
  hdma2d.LayerCfg[1].AlphaMode = DMA2D_NO_MODIF_ALPHA;
  hdma2d.LayerCfg[1].InputAlpha = 0;
  if (HAL_DMA2D_Init(&hdma2d) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_DMA2D_ConfigLayer(&hdma2d, 1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN DMA2D_Init 2 */
  /* USER CODE END DMA2D_Init 2 */
}
/**
  * @brief I2C3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_I2C3_Init(void)
{
  /* USER CODE BEGIN I2C3_Init 0 */
  /* USER CODE END I2C3_Init 0 */
  /* USER CODE BEGIN I2C3_Init 1 */
  /* USER CODE END I2C3_Init 1 */
  hi2c3.Instance = I2C3;
  hi2c3.Init.Timing = 0x00C0EAFF;
  hi2c3.Init.OwnAddress1 = 0;
  hi2c3.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  hi2c3.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  hi2c3.Init.OwnAddress2 = 0;
  hi2c3.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
  hi2c3.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  hi2c3.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  if (HAL_I2C_Init(&hi2c3) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Analogue filter
  */
  if (HAL_I2CEx_ConfigAnalogFilter(&hi2c3, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Digital filter
  */
  if (HAL_I2CEx_ConfigDigitalFilter(&hi2c3, 0) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN I2C3_Init 2 */
  /* USER CODE END I2C3_Init 2 */
}
/**
  * @brief LTDC Initialization Function
  * @param None
  * @retval None
  */
static void MX_LTDC_Init(void)
{
  /* USER CODE BEGIN LTDC_Init 0 */
  /* USER CODE END LTDC_Init 0 */
  LTDC_LayerCfgTypeDef pLayerCfg = {0};
  /* USER CODE BEGIN LTDC_Init 1 */
  /* USER CODE END LTDC_Init 1 */
  hltdc.Instance = LTDC;
  hltdc.Init.HSPolarity = LTDC_HSPOLARITY_AL;
  hltdc.Init.VSPolarity = LTDC_VSPOLARITY_AL;
  hltdc.Init.DEPolarity = LTDC_DEPOLARITY_AL;
  hltdc.Init.PCPolarity = LTDC_PCPOLARITY_IPC;
  hltdc.Init.HorizontalSync = 40;
  hltdc.Init.VerticalSync = 9;
  hltdc.Init.AccumulatedHBP = 53;
  hltdc.Init.AccumulatedVBP = 11;
  hltdc.Init.AccumulatedActiveW = 533;
  hltdc.Init.AccumulatedActiveH = 283;
  hltdc.Init.TotalWidth = 565;
  hltdc.Init.TotalHeigh = 285;
  hltdc.Init.Backcolor.Blue = 0;
  hltdc.Init.Backcolor.Green = 0;
  hltdc.Init.Backcolor.Red = 0;
  if (HAL_LTDC_Init(&hltdc) != HAL_OK)
  {
    Error_Handler();
  }
  pLayerCfg.WindowX0 = 0;
  pLayerCfg.WindowX1 = 480;
  pLayerCfg.WindowY0 = 0;
  pLayerCfg.WindowY1 = 272;
  pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_RGB565;
  pLayerCfg.Alpha = 255;
  pLayerCfg.Alpha0 = 0;
  pLayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_CA;
  pLayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_CA;
  pLayerCfg.FBStartAdress = 0xC0000000;
  pLayerCfg.ImageWidth = 480;
  pLayerCfg.ImageHeight = 272;
  pLayerCfg.Backcolor.Blue = 0;
  pLayerCfg.Backcolor.Green = 0;
  pLayerCfg.Backcolor.Red = 0;
  if (HAL_LTDC_ConfigLayer(&hltdc, &pLayerCfg, 0) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN LTDC_Init 2 */
  /* USER CODE END LTDC_Init 2 */
}
/**
  * @brief QUADSPI Initialization Function
  * @param None
  * @retval None
  */
static void MX_QUADSPI_Init(void)
{
  /* USER CODE BEGIN QUADSPI_Init 0 */
  /* USER CODE END QUADSPI_Init 0 */
  /* USER CODE BEGIN QUADSPI_Init 1 */
  /* USER CODE END QUADSPI_Init 1 */
  /* QUADSPI parameter configuration*/
  hqspi.Instance = QUADSPI;
  hqspi.Init.ClockPrescaler = 1;
  hqspi.Init.FifoThreshold = 4;
  hqspi.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_HALFCYCLE;
  hqspi.Init.FlashSize = 24;
  hqspi.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_6_CYCLE;
  hqspi.Init.ClockMode = QSPI_CLOCK_MODE_0;
  hqspi.Init.FlashID = QSPI_FLASH_ID_1;
  hqspi.Init.DualFlash = QSPI_DUALFLASH_DISABLE;
  if (HAL_QSPI_Init(&hqspi) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN QUADSPI_Init 2 */
  BSP_QSPI_Init();
  BSP_QSPI_MemoryMappedMode();
  HAL_NVIC_DisableIRQ(QUADSPI_IRQn);
  /* USER CODE END QUADSPI_Init 2 */
}
/**
  * @brief RTC Initialization Function
  * @param None
  * @retval None
  */
static void MX_RTC_Init(void)
{
  /* USER CODE BEGIN RTC_Init 0 */
  /* USER CODE END RTC_Init 0 */
  RTC_TimeTypeDef sTime = {0};
  RTC_DateTypeDef sDate = {0};
  RTC_AlarmTypeDef sAlarm = {0};
  /* USER CODE BEGIN RTC_Init 1 */
  /* USER CODE END RTC_Init 1 */
  /** Initialize RTC Only
  */
  hrtc.Instance = RTC;
  hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
  hrtc.Init.AsynchPrediv = 127;
  hrtc.Init.SynchPrediv = 255;
  hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
  hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
  hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
  if (HAL_RTC_Init(&hrtc) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN Check_RTC_BKUP */
  /* USER CODE END Check_RTC_BKUP */
  /** Initialize RTC and set the Time and Date
  */
  sTime.Hours = 0x0;
  sTime.Minutes = 0x0;
  sTime.Seconds = 0x0;
  sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
  sTime.StoreOperation = RTC_STOREOPERATION_RESET;
  if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK)
  {
    Error_Handler();
  }
  sDate.WeekDay = RTC_WEEKDAY_MONDAY;
  sDate.Month = RTC_MONTH_JANUARY;
  sDate.Date = 0x1;
  sDate.Year = 0x0;
  if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BCD) != HAL_OK)
  {
    Error_Handler();
  }
  /** Enable the Alarm A
  */
  sAlarm.AlarmTime.Hours = 0x0;
  sAlarm.AlarmTime.Minutes = 0x0;
  sAlarm.AlarmTime.Seconds = 0x0;
  sAlarm.AlarmTime.SubSeconds = 0x0;
  sAlarm.AlarmTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
  sAlarm.AlarmTime.StoreOperation = RTC_STOREOPERATION_RESET;
  sAlarm.AlarmMask = RTC_ALARMMASK_NONE;
  sAlarm.AlarmSubSecondMask = RTC_ALARMSUBSECONDMASK_ALL;
  sAlarm.AlarmDateWeekDaySel = RTC_ALARMDATEWEEKDAYSEL_DATE;
  sAlarm.AlarmDateWeekDay = 0x1;
  sAlarm.Alarm = RTC_ALARM_A;
  if (HAL_RTC_SetAlarm(&hrtc, &sAlarm, RTC_FORMAT_BCD) != HAL_OK)
  {
    Error_Handler();
  }
  /** Enable the Alarm B
  */
  sAlarm.Alarm = RTC_ALARM_B;
  if (HAL_RTC_SetAlarm(&hrtc, &sAlarm, RTC_FORMAT_BCD) != HAL_OK)
  {
    Error_Handler();
  }
  /** Enable the TimeStamp
  */
  if (HAL_RTCEx_SetTimeStamp(&hrtc, RTC_TIMESTAMPEDGE_RISING, RTC_TIMESTAMPPIN_POS1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN RTC_Init 2 */
  /* USER CODE END RTC_Init 2 */
}
/**
  * @brief TIM1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM1_Init(void)
{
  /* USER CODE BEGIN TIM1_Init 0 */
  /* USER CODE END TIM1_Init 0 */
  TIM_SlaveConfigTypeDef sSlaveConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};
  TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
  /* USER CODE BEGIN TIM1_Init 1 */
  /* USER CODE END TIM1_Init 1 */
  htim1.Instance = TIM1;
  htim1.Init.Prescaler = 168;
  htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim1.Init.Period = ADC_SAMPLE_PERIOD_IN_US - 1;
  htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim1.Init.RepetitionCounter = 0;
  htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_OC_Init(&htim1) != HAL_OK)
  {
    Error_Handler();
  }
  sSlaveConfig.SlaveMode = TIM_SLAVEMODE_DISABLE;
  sSlaveConfig.InputTrigger = TIM_TS_ITR0;
  if (HAL_TIM_SlaveConfigSynchro(&htim1, &sSlaveConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_TOGGLE;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
  sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
  if (HAL_TIM_OC_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
  sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
  sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
  sBreakDeadTimeConfig.DeadTime = 0;
  sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
  sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
  sBreakDeadTimeConfig.BreakFilter = 0;
  sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE;
  sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH;
  sBreakDeadTimeConfig.Break2Filter = 0;
  sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
  if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM1_Init 2 */
  /* USER CODE END TIM1_Init 2 */
}
/**
  * @brief TIM10 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM10_Init(void)
{
  /* USER CODE BEGIN TIM10_Init 0 */
  /* USER CODE END TIM10_Init 0 */
  TIM_OC_InitTypeDef sConfigOC = {0};
  /* USER CODE BEGIN TIM10_Init 1 */
  /* USER CODE END TIM10_Init 1 */
  htim10.Instance = TIM10;
  htim10.Init.Prescaler = 168;
  htim10.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim10.Init.Period = 20000;
  htim10.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim10.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim10) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_Init(&htim10) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 10000;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim10, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM10_Init 2 */
  /* USER CODE END TIM10_Init 2 */
  HAL_TIM_MspPostInit(&htim10);
}
/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{
  /* USER CODE BEGIN USART1_Init 0 */
  /* USER CODE END USART1_Init 0 */
  /* USER CODE BEGIN USART1_Init 1 */
  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */
  /* USER CODE END USART1_Init 2 */
}
/* FMC initialization function */
static void MX_FMC_Init(void)
{
  /* USER CODE BEGIN FMC_Init 0 */
  /* USER CODE END FMC_Init 0 */
  FMC_SDRAM_TimingTypeDef SdramTiming = {0};
  /* USER CODE BEGIN FMC_Init 1 */
  /* USER CODE END FMC_Init 1 */
  /** Perform the SDRAM1 memory initialization sequence
  */
  hsdram1.Instance = FMC_SDRAM_DEVICE;
  /* hsdram1.Init */
  hsdram1.Init.SDBank = FMC_SDRAM_BANK1;
  hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8;
  hsdram1.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12;
  hsdram1.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_16;
  hsdram1.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
  hsdram1.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_3;
  hsdram1.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
  hsdram1.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_2;
  hsdram1.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE;
  hsdram1.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0;
  /* SdramTiming */
  SdramTiming.LoadToActiveDelay = 2;
  SdramTiming.ExitSelfRefreshDelay = 7;
  SdramTiming.SelfRefreshTime = 4;
  SdramTiming.RowCycleDelay = 7;
  SdramTiming.WriteRecoveryTime = 3;
  SdramTiming.RPDelay = 2;
  SdramTiming.RCDDelay = 2;
  if (HAL_SDRAM_Init(&hsdram1, &SdramTiming) != HAL_OK)
  {
    Error_Handler( );
  }
  /* USER CODE BEGIN FMC_Init 2 */
  __IO uint32_t tmpmrd = 0;
    /* Step 1: Configure a clock configuration enable command */
    Command.CommandMode            = FMC_SDRAM_CMD_CLK_ENABLE;
    Command.CommandTarget          =  FMC_SDRAM_CMD_TARGET_BANK1;
    Command.AutoRefreshNumber      = 1;
    Command.ModeRegisterDefinition = 0;
    /* Send the command */
    HAL_SDRAM_SendCommand(&hsdram1, &Command, SDRAM_TIMEOUT);
    /* Step 2: Insert 100 us minimum delay */
    /* Inserted delay is equal to 1 ms due to systick time base unit (ms) */
    HAL_Delay(1);
    /* Step 3: Configure a PALL (precharge all) command */
    Command.CommandMode            = FMC_SDRAM_CMD_PALL;
    Command.CommandTarget          = FMC_SDRAM_CMD_TARGET_BANK1;
    Command.AutoRefreshNumber      = 1;
    Command.ModeRegisterDefinition = 0;
    /* Send the command */
    HAL_SDRAM_SendCommand(&hsdram1, &Command, SDRAM_TIMEOUT);
    /* Step 4: Configure an Auto Refresh command */
    Command.CommandMode            = FMC_SDRAM_CMD_AUTOREFRESH_MODE;
    Command.CommandTarget          = FMC_SDRAM_CMD_TARGET_BANK1;
    Command.AutoRefreshNumber      = 8;
    Command.ModeRegisterDefinition = 0;
    /* Send the command */
    HAL_SDRAM_SendCommand(&hsdram1, &Command, SDRAM_TIMEOUT);
    /* Step 5: Program the external memory mode register */
    tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_1 | \
             SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL    | \
             SDRAM_MODEREG_CAS_LATENCY_3            | \
             SDRAM_MODEREG_OPERATING_MODE_STANDARD  | \
             SDRAM_MODEREG_WRITEBURST_MODE_SINGLE;
    Command.CommandMode            = FMC_SDRAM_CMD_LOAD_MODE;
    Command.CommandTarget          = FMC_SDRAM_CMD_TARGET_BANK1;
    Command.AutoRefreshNumber      = 1;
    Command.ModeRegisterDefinition = tmpmrd;
    /* Send the command */
    HAL_SDRAM_SendCommand(&hsdram1, &Command, SDRAM_TIMEOUT);
    /* Step 6: Set the refresh rate counter */
    /* Set the device refresh rate */
    HAL_SDRAM_ProgramRefreshRate(&hsdram1, REFRESH_COUNT);
    
    //Deactivate speculative/cache access to first FMC Bank to save FMC bandwidth
    FMC_Bank1->BTCR[0] = 0x000030D2;
  /* USER CODE END FMC_Init 2 */
}
/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOE_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOG_CLK_ENABLE();
  __HAL_RCC_GPIOJ_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();
  __HAL_RCC_GPIOI_CLK_ENABLE();
  __HAL_RCC_GPIOK_CLK_ENABLE();
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOF_CLK_ENABLE();
  __HAL_RCC_GPIOH_CLK_ENABLE();
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_4, GPIO_PIN_RESET);
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LED0_GPIO_Port, LED0_Pin, GPIO_PIN_RESET);
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOD, GPIO_PIN_5, GPIO_PIN_RESET);
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LCD_BL_CTRL_GPIO_Port, LCD_BL_CTRL_Pin, GPIO_PIN_SET);
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LCD_DISP_GPIO_Port, LCD_DISP_Pin, GPIO_PIN_SET);
  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOH, GPIO_PIN_13, GPIO_PIN_RESET);
  /*Configure GPIO pin : PE3 */
  GPIO_InitStruct.Pin = GPIO_PIN_3;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
  /*Configure GPIO pin : PB4 */
  GPIO_InitStruct.Pin = GPIO_PIN_4;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  /*Configure GPIO pin : LED0_Pin */
  GPIO_InitStruct.Pin = LED0_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(LED0_GPIO_Port, &GPIO_InitStruct);
  /*Configure GPIO pin : PJ12 */
  GPIO_InitStruct.Pin = GPIO_PIN_12;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOJ, &GPIO_InitStruct);
  /*Configure GPIO pin : PD5 */
  GPIO_InitStruct.Pin = GPIO_PIN_5;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
  /*Configure GPIO pins : BUTTON1_Pin BUTTON0_Pin */
  GPIO_InitStruct.Pin = BUTTON1_Pin|BUTTON0_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);
  /*Configure GPIO pin : PC13 */
  GPIO_InitStruct.Pin = GPIO_PIN_13;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  /*Configure GPIO pin : LCD_BL_CTRL_Pin */
  GPIO_InitStruct.Pin = LCD_BL_CTRL_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(LCD_BL_CTRL_GPIO_Port, &GPIO_InitStruct);
  /*Configure GPIO pin : PD4 */
  GPIO_InitStruct.Pin = GPIO_PIN_4;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
  /*Configure GPIO pin : PH15 */
  GPIO_InitStruct.Pin = GPIO_PIN_15;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
  /*Configure GPIO pin : PI1 */
  GPIO_InitStruct.Pin = GPIO_PIN_1;
  GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  GPIO_InitStruct.Alternate = GPIO_AF5_SPI2;
  HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);
  /*Configure GPIO pin : LCD_DISP_Pin */
  GPIO_InitStruct.Pin = LCD_DISP_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(LCD_DISP_GPIO_Port, &GPIO_InitStruct);
  /*Configure GPIO pin : PH13 */
  GPIO_InitStruct.Pin = GPIO_PIN_13;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/* USER CODE BEGIN Header_TouchGFX_Task */
/**
  * @brief  Function implementing the TouchGFXTask thread.
  * @param  argument: Not used
  * @retval None
  */
/* USER CODE END Header_TouchGFX_Task */
__weak void TouchGFX_Task(void *argument)
{
  /* USER CODE BEGIN 5 */
  MX_TouchGFX_Process();
  /* Infinite loop */
  for(;;)
  {
    osDelay(1);
  }
  /* USER CODE END 5 */
}
/* MPU Configuration */
void MPU_Config(void)
{
  MPU_Region_InitTypeDef MPU_InitStruct = {0};
  /* Disables the MPU */
  HAL_MPU_Disable();
  /** Initializes and configures the Region and the memory to be protected
  */
  MPU_InitStruct.Enable = MPU_REGION_ENABLE;
  MPU_InitStruct.Number = MPU_REGION_NUMBER0;
  MPU_InitStruct.BaseAddress = 0x90000000;
  MPU_InitStruct.Size = MPU_REGION_SIZE_256MB;
  MPU_InitStruct.SubRegionDisable = 0x0;
  MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
  MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
  MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
  MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
  MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
  MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
  HAL_MPU_ConfigRegion(&MPU_InitStruct);
  /** Initializes and configures the Region and the memory to be protected
  */
  MPU_InitStruct.Enable = MPU_REGION_ENABLE;
  MPU_InitStruct.Number = MPU_REGION_NUMBER1;
  MPU_InitStruct.BaseAddress = 0x90000000;
  MPU_InitStruct.Size = MPU_REGION_SIZE_16MB;
  MPU_InitStruct.SubRegionDisable = 0x0;
  MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
  MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
  MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
  MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
  MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
  MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
  HAL_MPU_ConfigRegion(&MPU_InitStruct);
  /* Enables the MPU */
  HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}
/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  /* USER CODE END Error_Handler_Debug */
}
#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/